Helena, MT 677-472-0711 • Billings, MT 600-735-4489 • Casper, WY 888-235-6515 Gillette, WY 866-686-7175 • Rapid City, SD 888-672-1225 • College Station, TX 888-690-2218

ANALYTICAL SUMMARY REPORT

June 23, 2011

Tetra Tech Inc 303 Irene St Helena, MT 59601

Workorder No.: H11060064

Quote ID: H634 - Beal 2011 Site Wide Monitoring

Project Name:

Beal Mtn

Energy Laboratories Inc Helena MT received the following 3 samples for Tetra Tech Inc on 6/3/2011 for analysis.

Sample ID	Client Sample ID	Collect Date Receive I	ate Matrix	Test
H11060064-001	Sump-3A	06/02/11 13:45 06/03/1	1 Aqueous	Metals by ICP/ICPMS, Dissolved Metals by ICP/ICPMS, Tot. Rec. Alkalinity Cyanide, Total Manual Distillation Thiocyanate Total Cyanide Digestion Cyanide, Weak Acid Dissociable WAD Cyanide Distillation Conductivity Mercury, Total Recoverable Fluoride Anions by Ion Chromatography Nitrogen, Ammonia Nitrogen, Nitrite Nitrogen, Nitrite PH Metals Digestion by EPA 200.2 Preparation, Dissolved Filtration Digestion, Mercury by CVAA Digestion, Total P Water Preparation for TDS Phosphorus, Total Solids, Total Dissolved
H11060064-002	Sump-1	06/02/11 14:25 06/03/1	1 Aqueous	Same As Above
H11060064-003	Dup-2	06/02/11 6:00 06/03/1	1 Aqueous	Same As Above

This report was prepared by Energy Laboratories, Inc., 3161 E. Lyndale Ave., Helena, MT 59604. Any exceptions or problems with the analyses are noted in the Laboratory Analytical Report, the QA/QC Summary Report, or the Case Narrative.

The results as reported relate only to the item(s) submitted for testing.

If you have any questions regarding these test results, please call.

Report Approved By:

Inorganic Supervisor

Digitally signed by Amanda B. Blackburn

Date: 2011.06.29 10:27:19 -06:00

www.energylab.com Analytical Excellence Since 1952 Helena, MT 877-472-0711 • Billings, MT 800-735-4489 • Casper, WY 868-235-0515 Gillette, WY 866-686-7175 • Rapid City, SD 888-672-1225 • College Station, TX 888-690-2218

CLIENT:

Tetra Tech Inc

Project:

Beal Mtn

Sample Delivery Group: H11060064

Report Date: 06/23/11

CASE NARRATIVE

Tests associated with analyst identified as ELI-B were subcontracted to Energy Laboratories, 1120 S. 27th St., Billings, MT, EPA Number MT00005.

Sample 003 for Total Cyanide was re-analyzed past the recommended hold time. No Charge for analysis. Wj 6/23/11

Helena, MT 877-472-0711 • Billings, MT 800-735-4489 • Casper, WY 888-235-0515 Gillette, WY 865-586-7175 - Rapid City, SD 888-672-1225 - College Station, TX 888-690-2218

LABORATORY ANALYTICAL REPORT

Prepared by Helena, MT Branch

Client:

Tetra Tech Inc

Project:

Beal Mtn

Lab ID:

H11060064-001

Client Sample ID Sump-3A

Report Date: 06/23/11 Collection Date: 06/02/11 13:45 DateReceived: 06/03/11

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL PROPERTIES							
pH	8.0	s.u.		0.1		A4500-H B	06/03/11 17:09 / zeg
Conductivity	4170	umhos/cm		1		A2510 B	06/03/11 13:50 / cmm
Solids, Total Dissolved TDS @ 180 C	3370	mg/L		10		A2540 C	06/03/11 15:12 / cmm
INORGANICS							
Cyanide, Total	0.96	mg/L	D	0.01		Kelada mod	06/13/11 17:28 / eli-b
Thiocyanate as N	0.075	mg/L		0.048		A4500-CN M	06/17/11 10:00 / eli-bi
Alkalinity, Total as CaCO3	210	mg/L		4		A2320 B	06/03/11 17:09 / zeg
Chloride	170	mg/L	D	5		E300.0	06/06/11 16:43 / zeg
Sulfate	1700	mg/L	D	20		E300.0	06/06/11 16:43 / zeg
Cyanide, Weak Acid Dissociable	0.076	mg/L		0.005		D2036C	06/14/11 13:58 / eli-b
Thiocyanate	0.31	mg/L		0.20		A4500-CN M	06/17/11 10:00 / eli-b1
Fluoride	0.5	mg/L		0.1	4	A4500-F C	06/07/11 12:19 / zeg
NUTRIENTS							
Nitrogen, Ammonia as N	10.9	mg/L	D	0.5		E350.1	06/07/11 16:41 / reh
Nitrogen, Nitrate+Nitrite as N	88.7	mg/L	D	0.5		E353.2	06/06/11 13:40 / reh
Nitrogen, Nitrite as N	6.2	mg/L	D	0.2		E353.2	06/03/11 14:24 / reh
Phosphorus, Total as P	0.14	mg/L		0.01		E365.1	06/06/11 15:45 / reh
METALS, DISSOLVED							
Calcium	300	mg/L		1		E200.7	06/06/11 14:37 / stp
Magnesium	17	mg/L		1		E200.7	06/06/11 14:37 / stp
Potassium	16	mg/L		1		E200.7	06/06/11 14:37 / stp
Sodium	744	mg/L		1		E200.7	06/06/11 14:37 / stp
METALS, TOTAL RECOVERABLE							
Arsenic	0.201	mg/L		0.005		E200.8	06/07/11 13:54 / dck
Barium	0.021	mg/L		0.005		E200.8	06/07/11 13:54 / dck
Cadmium	0.00040	mg/L		80000.0		E200.8	06/07/11 13:54 / dck
Copper	0.03	mg/L		0.01		E200.8	06/07/11 13:54 / dck
ron	1.12	mg/L		0.03		E200.8	06/07/11 13:54 / dck
_ead	ND	mg/L		0.002		E200.8	06/07/11 13:54 / dck
Manganese	0.65	mg/L		0.01		E200.8	06/07/11 13:54 / dck
Mercury	ND	mg/L		0.0001	0.0001	E245.1	06/10/11 15:29 / sbk
Selenium	0.218	mg/L		0.005		E200.8	06/07/11 13:54 / dck
Silicon	8.5	mg/L		0.1		E200.8	06/07/11 13:54 / dck
Silver	ND	mg/L		0.0005		E200.8	06/07/11 13:54 / dck
Strontium	4.0	mg/L		0.1		E200.8	06/07/11 13:54 / dck

Report Definitions: RL - Analyte reporting limit.

QCL - Quality control limit.

D - RL increased due to sample matrix.

MCL - Maximum contaminant level.

LABORATORY ANALYTICAL REPORT

Prepared by Helena, MT Branch

Client:

Tetra Tech Inc

Project:

Beal Mtn

Lab ID:

H11060064-002

Client Sample ID Sump-1

Report Date: 06/23/11 **Collection Date:** 06/02/11 14:25

DateReceived: 06/03/11

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL PROPERTIES							
pH	7.0	s.u.		0.1		A4500-H B	06/03/11 17:23 / zeg
Conductivity	3150	umhos/cm		1		A2510 B	06/03/11 13:52 / cmm
Solids, Total Dissolved TDS @ 180 C	2730	mg/L		10		A2540 C	06/03/11 15:12 / cmm
INORGANICS							
Cyanide, Total	0.054	mg/L		0.005		Kelada mod	06/13/11 17:30 / eli-b
Thiocyanate as N	ND	mg/L		0.048		A4500-CN M	06/17/11 10:00 / eli-b1
Alkalinity, Total as CaCO3	25	mg/L		4		A2320 B	06/03/11 17:23 / zeg
Chloride	58	mg/L	D	2		E300.0	06/06/11 16:55 / zeg
Sulfate	1700	mg/L	D	10		E300.0	06/06/11 16:55 / zeg
Cyanide, Weak Acid Dissociable	0.019	mg/L		0.005		D2036C	06/14/11 14:00 / eli-b
Thiocyanate	ND	mg/L		0.20		A4500-CN M	06/17/11 10:00 / eli-b1
Fluoride	0.2	mg/L		0.1	4	A4500-F C	06/07/11 12:22 / zeg
NUTRIENTS							
Nitrogen, Ammonia as N	6.4	mg/L	D	0.2		E350.1	06/07/11 16:36 / reh
Nitrogen, Nitrate+Nitrite as N	3.12	mg/L		0.05		E353.2	06/06/11 13:43 / reh
Nitrogen, Nitrite as N	0.37	mg/L		0.05		E353.2	06/03/11 14:25 / reh
Phosphorus, Total as P	ND	mg/L		0.01		E365.1	06/06/11 15:46 / reh
METALS, DISSOLVED							
Calcium	337	mg/L		1		E200.7	06/06/11 14:46 / stp
Magnesium	40	mg/L		1		E200.7	06/06/11 14:46 / stp
Potassium	12	mg/L		1		E200.7	06/06/11 14:46 / stp
Sodium	428	mg/L		1		E200.7	06/06/11 14:46 / stp
METALS, TOTAL RECOVERABLE							
Arsenic	ND	mg/L		0.005		E200.8	06/07/11 14:20 / dck
Barium	0.011	mg/L		0.005		E200.8	06/07/11 14:20 / dck
Cadmium	0.00583	mg/L		80000.0		E200.8	06/07/11 14:20 / dck
Copper	ND	mg/L		0.01		E200.8	06/07/11 14:20 / dck
Iron	12.2	mg/L		0.03		E200.8	06/07/11 14:20 / dck
Lead	ND	mg/L		0.002		E200.8	06/07/11 14:20 / dck
Manganese	2.16	mg/L		0.01		E200.8	06/07/11 14:20 / dck
Mercury	ND	mg/L		0.0001	0.0001	E245.1	06/10/11 15:32 / sbk
Selenium	0.012	mg/L		0.005		E200.8	06/07/11 14:20 / dck
Silicon	0.7	mg/L		0.1		E200.8	06/07/11 14:20 / dck
Silver	ND	mg/L		0.0005		E200.8	06/07/11 14:20 / dck
Strontium	2.0	mg/L		0.1		E200.8	06/07/11 14:20 / dck

Report Definitions: RL - Analyte reporting limit.

QCL - Quality control limit.

D - RL increased due to sample matrix.

MCL - Maximum contaminant level.

LABORATORY ANALYTICAL REPORT

Prepared by Helena, MT Branch

Client:

Tetra Tech Inc

Project:

Beal Mtn

Lab ID:

H11060064-003

Client Sample ID Dup-2

Report Date: 06/23/11 **Collection Date:** 06/02/11 06:00

DateReceived: 06/03/11

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL.	MCL/ QCL	Method	Analysis Date / By
PHYSICAL PROPERTIES							
pH	7.2	s.u.		0.1		A4500-H B	06/03/11 17:30 / zeg
Conductivity	3000	umhos/cm		1		A2510 B	06/03/11 13:53 / cmm
Solids, Total Dissolved TDS @ 180 C	2640	mg/L		10		A2540 C	06/03/11 15:13 / cmm
INORGANICS							
Cyanide, Total	0.148	mg/L	Н	0.005		Kelada mod	06/22/11 13:18 / eli-b1
Thiocyanate as N	ND	mg/L		0.048		A4500-CN M	06/17/11 10:00 / eli-b1
Alkalinity, Total as CaCO3	34	mg/L		4		A2320 B	06/03/11 17:30 / zeg
Chloride	61	mg/L	D	2		E300.0	06/06/11 17:07 / zeg
Sulfate	1700	mg/L	D	10		E300.0	06/06/11 17:07 / zeg
Cyanide, Weak Acid Dissociable	0.075	mg/L		0.005		D2036C	06/15/11 16:23 / eli-b
Thiocyanate	ND	mg/L		0.20		A4500-CN M	06/17/11 10:00 / eli-b1
Fluoride	0.2	mg/L		0.1	4	A4500-F C	06/07/11 12:28 / zeg
NUTRIENTS							
Nitrogen, Ammonia as N	7.0	mg/L	D	0.2		E350.1	06/07/11 16:38 / reh
Nitrogen, Nitrate+Nitrite as N	2.80	mg/L		0.05		E353.2	06/06/11 13:44 / reh
Nitrogen, Nitrite as N	0.44	mg/L		0.05		E353.2	06/03/11 14:29 / reh
Phosphorus, Total as P	ND	mg/L		0.01		E365.1	06/10/11 09:44 / reh
METALS, DISSOLVED							
Calcium	321	mg/L		1		E200.7	06/06/11 14:50 / stp
Magnesium	34	mg/L		1		E200.7	06/06/11 14:50 / stp
Potassium	12	mg/L		1		E200.7	06/06/11 14:50 / stp
Sodium	401	mg/L		1		E200.7	06/06/11 14:50 / stp
METALS, TOTAL RECOVERABLE							
Arsenic	ND	mg/L		0.005		E200.8	06/07/11 14:28 / dck
Barium	0.012	mg/L		0.005		E200.8	06/07/11 14:28 / dck
Cadmium	0.00227	mg/L		80000.0		E200.8	06/07/11 14:28 / dck
Copper	0.02	mg/L		0.01		E200.8	06/07/11 14:28 / dck
Iron	12.8	mg/L		0.03		E200.8	06/07/11 14:28 / dck
Lead	ND	mg/L		0.002		E200.8	06/07/11 14:28 / dck
Manganese	1.48	mg/L		0.01		E200.8	06/07/11 14:28 / dck
Mercury	ND	mg/L		0.0001	0.0001	E245.1	06/10/11 15:34 / sbk
Selenium	0.015	mg/L		0.005		E200.8	06/07/11 14:28 / dck
Silicon	1.0	mg/L		0.1		E200.8	06/07/11 14:28 / dck
Silver	ND	mg/L		0.0005		E200.8	06/07/11 14:28 / dck
Strontium	2.7	mg/L		0.1		E200.8	06/07/11 14:28 / dck

Report Definitions: RL - Analyte reporting limit.

QCL - Quality control limit.

D - RL increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

H - Analysis performed past recommended holding time.

Helena, MT 577-472-0711 • Billings, MT 800-735-4489 • Casper, WY 888-235-0515 Gilletta, WY 866-686-7175 • Rapid City, SD 888-672-1225 • College Station, TX 888-699-2218

QA/QC Summary Report

Prepared by Helena, MT Branch

Client: Tetra Tech Inc Project: Beal Mtn Report Date: 06/29/11

Work Order: H11060064

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: A2320 B						,			Batcl	h: R71552
Sample ID: MBLK	Ме	thod Blank				Run: MAN-7	TECH_110603C		06/03	/11 16:54
Alkalinity, Total as CaCO3		1	mg/L	0.6						
Sample ID: LCS-06022011	Lak	oratory Cont	trol Sample			Run: MAN-1	ΓΕCH_110603C		06/03	/11 17:02
Alkalinity, Total as CaCO3		610	mg/L	4.0	101	90	110			
Sample ID: H11060064-001ADUP	Saı	mple Duplica	te			Run: MAN-1	ΓΕCH_110603C		06/03	/11 17:17
Alkalinity, Total as CaCO3		210	mg/L	4.0				0.1	20	
Sample ID: H11060067-002AMS	Saı	mple Matrix S	Spike			Run: MAN-1	ΓΕCH_110603C		06/03	/11 17:49
Alkalinity, Total as CaCO3		670	mg/L	4.0	100	90	110			
Sample ID: H11060067-009ADUP	Sai	nple Duplica	te			Run: MAN-1	TECH_110603C		06/03	/11 18:44
Alkalinity, Total as CaCO3		65	mg/L	4.0				1.7	20	

Helena, MT 677-472-0711 • Billings, MT 800-735-4489 • Casper, WY 888-235-0515 Gillette, WY 866-686-7175 • Rapid City, SD 888-672-1225 • College Station, TX 888-690-2218

QA/QC Summary Report

Prepared by Helena, MT Branch

Client: Tetra Tech Inc Project: Beal Mtn

Conductivity

Report Date: 06/29/11

0.0

10

Work Order: H11060064

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: A2510 B								Analytical	Run: COND	_110603/
Sample ID: ICV1_110603A	Init	ial Calibrati	on Verification St	andard					06/03	/11 13:49
Conductivity		939	umhos/cm	1.0	94	90	110			
Method: A2510 B							В	atch: 11060	3A-COND-F	PROBE-W
Sample ID: H11060064-001ADUF	Sar	mple Duplic	cate			Run: CONE	_110603A		06/03	/11 13:51
Conductivity		4160	umhos/cm	1.0				0.2	10	
Sample ID: H11060067-009ADUP	Sar	nple Duplic	cate			Run: CONE	_110603A		06/03	/11 14:14

1.0

218 umhos/cm

Helena, MT 877-472-0711 • Billings, MT 800-735-4489 • Casper, WY 888-235-0515 Gillette, WY 866-686-7175 • Rapid City, SD 888-672-1225 • College Station, TX 888-680-2218

QA/QC Summary Report

Prepared by Helena, MT Branch

Client: Tetra Tech Inc

Report Date: 06/29/11

Project: Beal Mtn Work Order: H11060064

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: A2540 C									Bat	tch: 12439
Sample ID: MB-12439	Me	thod Blank				Run: ACCU	-124 (14410200)_110603	06/03	/11 15:11
Solids, Total Dissolved TDS @ 180	C	3	mg/L	1.0						
Sample ID: LCS-12439	Lab	oratory Con	trol Sample			Run: ACCU	-124 (14410200)_110603	06/03	/11 15:11
Solids, Total Dissolved TDS @ 180	C	1980	mg/L	10	99	90	110			
Sample ID: H11060064-001ADUP	Sar	mple Duplica	ate			Run: ACCU	-124 (14410200)_110603	06/06	/11 16:46
Solids, Total Dissolved TDS @ 180	C	3450	mg/L	10			·	2.3	5	
Sample ID: H11060064-002AMS	Sar	mple Matrix :	Spike			Run: ACCU	-124 (14410200) 110603	06/03	/11 15:13
Solids, Total Dissolved TDS @ 180	С	4680	mg/L	10	97	80	120			

Helena, MT 877-472-0711 • Billings, MT 800-735-4489 • Casper, WY 888-235-0515 Gillette, WY 866-686-7175 • Rapid City, SD 888-672-1225 • College Station, TX 888-690-2218

QA/QC Summary Report

Prepared by Helena, MT Branch

Client: Tetra Tech Inc

Project: Beal Mtn

Report Date: 06/29/11

Work Order: H11060064

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: A4500-CN M								Analytic	cal Run: SUB	-B167405
Sample ID: ICV-R167405	2 ini	tial Calibration	n Verification	Standard					06/17	/11 10:00
Thiocyanate		4.9	mg/L	0.20	99	90	110			
Thiocyanate as N		1.2	mg/L	0.048	9 9	90	110			
Method: A4500-CN M		····							Batch: B	R167405
Sample ID: MB-R167405	2 Me	ethod Blank				Run: SUB-E	3167405		06/17	/11 10:00
Thiocyanate		ND	mg/L	0.04						
Thiocyanate as N		ND	mg/L	0.01						
Sample ID: B11060107-001FMSD	2 Sa	mple Matrix S	Spike Duplicat	e		Run: SUB-E	3167405		06/17	/11 10:00
Thiocyanate		5.1	mg/L	0.20	101	80	120	2.7	10	
Thiocyanate as N		1.2	mg/L	0.048	101	80	120	2.7	10	
Sample ID: B11060107-001FMS	2 Sa	mple Matrix S	Spike			Run: SUB-E	3167405		06/17	/11 10:00
Thiocyanate		5.2	mg/L	0.20	104	80	120			
Thiocyanate as N		1.3	mg/L	0.048	104	80	120			

Qualifiers:

RL - Analyte reporting limit.

Helena, MT 877-472-0711 • Billings, MT 800-735-4489 • Casper, WY 868-235-0515 Gillette, WY 866-686-7175 • Rapid City, SD 888-672-1225 • College Station, TX 868-690-2218

QA/QC Summary Report

Prepared by Helena, MT Branch

Client: Tetra Tech Inc Project: Beal Mtn

Report Date: 06/29/11

Work Order: H11060064

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	A4500-F C								Analyt	ical Run: PH	_110607A
Sample ID:	ICV1_110607A	Initi	ial Calibratio	n Verification Sta	ındard					06/07	/11 12:15
Fluoride			0.711	mg/L	0.10	95	90	110			
Method:	A4500-F C	•••		·					Ba	tch: 110607A	-F-ISE-W
Sample ID:	MBLK1_110607A	Me	thod Blank				Run: PH_11	0607A		06/07	/11 12:15
Fluoride			ND	mg/L	0.02						
Sample ID:	LFB2_110607A	Lab	oratory Forti	ified Blank			Run: PH_11	0607A		06/07	/11 12:17
Fluoride			0.469	mg/L	0.10	94	90	110			
Sample ID:	H11060064-002AMS	Sar	nple Matrix S	Spike			Run: PH_11	0607A		06/07	/11 12:25
Fluoride			0.676	mg/L	0.10	94	85	115			
Sample ID:	H11060064-002AMSE) Sar	nple Matrix 9	Spike Duplicate			Run: PH_11	0607A		06/07	/11 12:26
Fluoride			0.670	mg/L	0.10	93	85	115	0.9	20	

Helena, MT 677-472-0711 • Billings, MT 800-735-4489 • Casper, WY 868-235-0515 Gillette, WY 866-686-7175 • Rapid City, SD 888-672-1225 • College Station, TX 888-698-2218

QA/QC Summary Report

Prepared by Helena, MT Branch

Client: Tetra Tech Inc
Project: Beal Mtn

Report Date: 06/29/11

Work Order: H11060064

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: A4500-H B							Analyt	ical Run:	MAN-TECH	_110603C
Sample ID: CCV1-1905	Co	ntinuing Calil	oration Verific	ation Standard					06/03	/11 16:36
pH		3.93	s.u.	0.10	98	98	102			
Sample ID: CCV-1943	Co	ntinuing Calil	oration Verific	ation Standard					06/03	/11 16:39
pН		6.95	s.u.	0.10	99	98	102			
Sample ID: ICV	Init	ial Calibration	Verification	Standard					06/03	/11 16:45
рН		6.96	s.u.	0.10	99	99	101			
Method: A4500-H B									Batcl	h: R71552
Sample ID: CCV3-1664	Co	ntinuing Calil	oration Verific	ation Standard		Run: MAN-	TECH_110603C		06/03	/11 16:42
pH		9.96	s.u.	0.10	100	98	110			
Sample ID: H11060064-001ADUF	. Sa	mple Duplica	te			Run: MAN-	TECH_110603C		06/03	/11 17:17
pΗ		7.97	s.u.	0.10				0.3	3	
Sample ID: H11060067-009ADUP	Sa	mple Duplica	te			Run: MAN-	TECH_110603C		06/03	/11 18:44
pΗ		8.12	s.u.	0.10						

Qualifiers:

RL - Analyte reporting limit.

Helena, MT 877-472-0711 • Billings, MT 800-735-4489 • Casper, WY 888-235-0515 Gillette, WY 866-686-7175 • Rapid City, SD 888-672-1225 • College Station, TX 888-689-2218

QA/QC Summary Report

Prepared by Helena, MT Branch

Client: Tetra Tech Inc
Project: Beal Mtn

Cyanide, Weak Acid Dissociable

Report Date: 06/29/11
Work Order: H11060064

						11011	· Oluci.	111100000	U-T
Analyte	Count Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: D2036C								Batch	: B_54656
Sample ID: B11060447-002EMSD	Sample Matrix S	Spike Duplicate			Run: SUB-E	3167173		06/14	/11 14:50
Cyanide, Weak Acid Dissociable	0.0960	mg/L	0.0050	92	80	120	0.9	10	
Sample ID: LCS-54656	Laboratory Cont	trol Sample			Run: SUB-E	3167173		06/14	/11 13:49
Cyanide, Weak Acid Dissociable	0.0967	mg/L	0.0050	97	90	110			
Sample ID: MB-54656	Method Blank				Run: SUB-E	3167173		06/14	/11 13:50
Cyanide, Weak Acid Dissociable	ND	mg/L	0.002						
Sample ID: B11060447-002EMS	Sample Matrix S	Spike			Run: SUB-E	3167173		06/14	/11 14:48
Cyanide, Weak Acid Dissociable	0.0952	mg/L	0.0050	91	80	120			
Method: D2036C			•					Batch	: B_5470
Sample ID: LCS-54705	Laboratory Cont	trol Sample			Run: SUB-E	3167288		06/15	/11 16:17
Cyanide, Weak Acid Dissociable	0.0917	mg/L	0.0050	92	90	110			
Sample ID: MB-54705	Method Blank				Run: SUB-E	167288		06/15	/11 16:21
Cyanide, Weak Acid Dissociable	ND	mg/L	0.002						
Sample ID: H11060064-003G	Sample Matrix S	Spike			Run: SUB-E	167288		06/15	/11 16:24
Cyanide, Weak Acid Dissociable	0.172	mg/L	0.0050	98	80	120			
Sample ID: H11060064-003G	Sample Matrix S	Spike Duplicate			Run: SUB-E	167288		06/15	/11 16:26

0.0050

84

80

120

8.7

10

0.158

mg/L

Qualifiers:

RL - Analyte reporting limit.

Prepared by Helena, MT Branch

Client: Tetra Tech Inc Project: Beal Mtn Report Date: 06/29/11

Work Order: H11060064

Analyte		Coun	t Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E200.7									un: ICP1-HE	
Sample ID:		4	Initial Calibratio	n Verification	Standard				Analytical n		_110006A 5/11 13:36
Calcium			38.9	mg/L	1.0	97	95	105		00/00	711 13.30
Magnesium			40.4	mg/L	1.0	101	95 95	105			
Potassium			40.1	mg/L	1.4	100	95 95	105			
Sodium			38.8	mg/L	1.0	97	95	105			
Sample ID:	CCV-1	4	Continuing Cali	hration Verific	eation Standard					06/06	/11 13:45
Calcium		·	25.4	mg/L	1.0	102	95	105		00/00	711 10.40
Magnesium			25.2	mg/L	1.0	101	95	105			
Potassium			26.1	mg/L	1.4	105	95	105			
Sodium			25.4	mg/L	1.0	102	95	105			
Sample ID:	ICSA	4	Interference Ch	eck Sample A	4					06/06	/11 14:05
Calcium			493	mg/L	1.0	99	80	120			
Magnesium			521	mg/L	1.0	104	80	120			
Potassium			0.00330	mg/L	1.0		0	0			
Sodium			0.0142	mg/L	1.0		0	0			
Sample ID:	ICSAB	4	Interference Ch	eck Sample A	∖B					06/06	/11 14:09
Calcium			516	mg/L	1.0	103	80	120			
Magnesium			543	mg/L	1.0	109	80	120			
Potassium			22.3	mg/L	1.4	111	80	120			
Sodium			21.0	mg/L	1.0	105	80	120			
Sample ID:	ccv	4	Continuing Cali	bration Verific	ation Standard					06/06	/11 14:13
Calcium			26.6	mg/L	1.0	107	90	110			
Magnesium			26.5	mg/L	1.0	106	90	110			
Potassium			26.0	mg/L	1.4	104	90	110			
Sodium			25.0	mg/L	1.0	100	90	110			
Method:	E200.7									Bat	ch: 12432
Sample ID:	MB-12432	4	Method Blank				Run: ICP1-l	HE_110606A	<u>.</u>	06/06	/11 14:34
Calcium			ND	mg/L	0.1						
Magnesium			ND	mg/L	0.02						
Potassium			0.4	mg/L	0.04						
Sodium			ND	mg/L	0.1						
•	H11060064-001CMS2	4	Sample Matrix S	-				IE_110606A	ı	06/06	/11 14:40
Calcium			320	mg/L	1.0		70	130			Α
Magnesium			37.2	mg/L	1.0	99	70	130			
Potassium			35.5	mg/L	1.0	99	70	130			
Sodium			736	mg/L	1.0		70	130			Α
	H11060064-001CMSD2	2 4	-					HE_110606A			/11 14:43
Calcium			320	mg/L	1.0		70	130		20	Α
Magnesium			35.7	mg/L	1.0	91	70	130		20	
Potassium			35.7	mg/L	1.0	101	70	130	0.7	20	

Qualifiers:

RL - Analyte reporting limit.

 ${\sf A}$ - The analyte level was greater than four times the spike level. In accordance with the method ${\sf \%}$ recovery is not calculated.

Helena, MT 877-472-0711 • Billings, MT 800-735-4489 • Casper, WY 888-235-0515 Gillette, WY 866-686-7175 • Rapid City, SD 888-572-1225 • College Station, TX 888-690-2218

QA/QC Summary Report

Prepared by Helena, MT Branch

Client: Tetra Tech Inc

Project: Beal Mtn

Report Date: 06/29/11

Work Order: H11060064

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E200.7								Bat	ch: 12432
Sample ID:	H11060064-001CMSD2 4	Sample Matrix S	Spike Duplicate			Run: ICP1-l	HE_110606A		06/06	/11 14:43
Sodium		767	mg/L	1.0		70	130	4.2	20	Α

Prepared by Helena, MT Branch

Client: Tetra Tech Inc

Project: Beal Mtn

Report Date: 06/29/11

Work Order: H11060064

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E200.8							Analyti	ical Run: I	CPMS204-B	_110607
Sample ID: ICV STD	11 Initial	Calibration	Nerification	n Standard					06/07	/11 10:26
Arsenic		0.0502	mg/L	0.0050	100	90	110			
Barium		0.0496	mg/L	0.10	99	90	110			
Cadmium		0.0262	mg/L	0.0010	105	90	110			
Copper		0.0513	mg/L	0.010	103	90	110			
Iron		0.262	mg/L	0.030	105	90	110			
Lead		0.0506	mg/L	0.010	101	90	110			
Manganese		0.251	mg/L	0.010	100	90	110			
Selenium		0.0509	mg/L	0.0050	102	90	110			
Silicon		0.491	mg/L	0.10	98	90	110			
Silver		0.0255	mg/L	0.0050	102	90	110			
Strontium		0.0489	mg/L	0.10	98	90	110			
Sample ID: ICSA	11 Interf	erence Che	eck Sample	Α					06/07	/11 10:30
Arsenic	0.	.000156	mg/L	0.0050						
Barium	0.	.000190	mg/L	0.10						
Cadmium	0.	.000673	mg/L	0.0010						
Copper	0.	.000591	mg/L	0.010						
Iron		106	mg/L	0.030	106	70	130			
Lead	7.	.60E-05	mg/L	0.010						
Manganese	(0.00215	mg/L	0.010						
Selenium	0.	.000220	mg/L	0.0050						
Silicon	(0.00510	mg/L	0.10		0	0			
Silver	0.	000286	mg/L	0.0050						
Strontium	(0.00588	mg/L	0.10						
Sample ID: ICSAB	11 Interfe	erence Che	eck Sample	AB					06/07	/11 10:35
Arsenic		0.0114	mg/L	0.0050	114	70	130			
Barium	0.	000218	mg/L	0.10		0	0			
Cadmium		0.0113	mg/L	0.0010	113	70	130			
Copper		0.0216	mg/L	0.010	108	70	130			
Iron		109	mg/L	0.030	109	70	130			
Lead	6.	.70E-05	mg/L	0.010		0	0			
Manganese		0.0239	mg/L	0.010	119	70	130			
Selenium		0.0112	mg/L	0.0050	112	70	130			
Silicon	(0.00472	mg/L	0.10		0	0			
Silver		0.0211	mg/L	0.0050	106	70	130			
Strontium	(0.00586	mg/L	0.10		0	0			
Sample ID: ICV STD	11 Initial	Calibration	Verification	Standard					06/07	/11 20:22
Arsenic		0.0502	mg/L	0.0050	100	90	110			
Barium		0.0510	mg/L	0.10	102	90	110			
Cadmium		0.0265	mg/L	0.0010	106	90	110			
Copper		0.0510	mg/L	0.010	102	90	110			
Iron		0.260	mg/L	0.030	104	90	110			
Lead		0.0518	mg/L	0.010	104	90	110			

Qualifiers:

RL - Analyte reporting limit.

Helena, MT 877-472-0711 • Billings, MT 800-735-4489 • Casper, WY 888-235-0515 Gillette, WY 866-686-7175 • Rapid City, SD 888-672-1225 • College Station, TX 888-690-2218

QA/QC Summary Report

Prepared by Helena, MT Branch

Client: Tetra Tech Inc

Report Date: 06/29/11

Project: Beal Mtn Work Order: H11060064

Analyte	Count Res	sult Units	RL	%REC	Low Limit	High Limit		RPDLimit	Qual
Method: E200.8						Analyt	ical Run:	CPMS204-B	_110607A
Sample ID: ICV STD	11 Initial Cal	bration Verific	ation Standard					06/07	/11 20:22
Manganese	0.	247 mg/L	0.010	99	90	110			
Selenium	0.0	498 mg/L	0.0050	100	90	110			
Silicon	0.	477 mg/L	0.10	95	90	110			
Silver	0.0	258 mg/L	0.0050	103	90	110			
Strontium	0.0	486 mg/L	0.10	97	90	110			
Sample ID: ICSA	11 Interferen	ce Check San	ıple A					06/07	/11 20:27
Arsenic	0.000	212 mg/L	0.0050						
Barium	0.000	196 mg/L	0.10						
Cadmium	0.000	663 mg/L	0.0010						
Copper	0.000	612 mg/L	0.010						
Iron		103 mg/L	0.030	103	70	130			
Lead	9.50E	-05 mg/L	0.010						
Manganese	0.00	212 mg/L	0.010						
Selenium	0.000	257 mg/L	0.0050						
Silicon	0.00	570 mg/L	0.10		0	0			
Silver	0.000	226 mg/L	0.0050						
Strontium	0.00	572 mg/L	0.10						
Sample ID: ICSAB	11 Interferen	ce Check Sam	ple AB					06/07/	/11 20:31
Arsenic	0.0	111 mg/L	0.0050	111	70	130			
Barium	0.000	179 mg/L	0.10		0	0			
Cadmium	0.0	112 mg/L	0.0010	112	70	130			
Copper	0.0	214 mg/L	0.010	107	70	130			
Iron		102 mg/L	0.030	102	70	130			
Lead	6.60E	-05 mg/L	0.010		0	0			
Manganese	0.0	233 mg/L	0.010	117	70	130			
Selenium	0.0	105 mg/L	0.0050	105	70	130			
Silicon	0.00	438 mg/L	0.10		0	0			
Silver	0.0	209 mg/L	0.0050	105	70	130			
Strontium	0.00	582 mg/L	0.10		0	0			
Sample ID: ICSA	11 Interferen	ce Check Sam	ple A					06/08/	/11 13:15
Arsenic	0.000	126 mg/L	0.0050						
Barium	0.000	167 mg/L	0.10						
Cadmium	0.000	688 mg/L	0.0010						
Copper	0.000	462 mg/L	0.010						
Iron	•	107 mg/L	0.030	107	70	130			
Lead	7.20E	-05 mg/L	0.010						
Manganese	0.00	209 mg/L	0.010						
Selenium	6.60E		0.0050						
Silicon	0.004		0.10		0	0			
Silver	3.00E		0.0050						
Strontium	0.00	600 mg/L	0.10						

Qualifiers:

RL - Analyte reporting limit.

Prepared by Helena, MT Branch

Client: Tetra Tech Inc Project: Beal Mtn Report Date: 06/29/11

Work Order: H11060064

Analyte	Count Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E200.8						Analytica	al Run:	ICPMS204-B	_110607/
Sample ID: ICSAB	11 Interference C	heck Sample AB						06/08	/11 13:19
Arsenic	0.0118	mg/L	0.0050	118	70	130			
Barium	0.000171	mg/L	0.10		0	0			
Cadmium	0.0115	mg/L	0.0010	115	70	130			
Copper	0.0219	mg/L	0.010	109	70	130			
Iron	111	mg/L	0.030	111	70	130			
Lead	6.90E-05	mg/L	0.010		0	0			
Manganese	0.0237	mg/L	0.010	119	70	130			
Selenium	0.0116	mg/L	0.0050	116	70	130			
Silicon	0.00525	mg/L	0.10		0	0			
Silver	0.0207	mg/L	0.0050	103	70	130			
Strontium	0.00604	mg/L	0.10		0	0			
Method: E200.8								Bat	ch: 12447
Sample ID: MB-12447	11 Method Blank				Run: ICPMS	3204-B_110607A		06/07/	/11 13:19
Arsenic	7E-05	mg/L	5E-05						
Barium	ND	mg/L	9E-05						
Cadmium	ND	mg/L	2E-05						
Copper	ND	mg/L	0.0004						
Iron	0.001	mg/L	0.0006						
Lead	ND	mg/L	2E-05						
Manganese	0.0002	mg/L	6E-05						
Selenium	ND	mg/L	0.0002						
Silicon	0.002	mg/L	0.0008						
Silver	ND	mg/L	6E-05						
Strontium	8E-05	mg/L	4E-05						
Sample ID: LCS-12447	11 Laboratory Cor	ntrol Sample			Run: ICPMS	S204-B_110607A		06/07/	/11 13:23
Arsenic	0.511	mg/L	0.0050	102	85	115			
Barium	0.510	mg/L	0.10	102	85	115			
Cadmium	0.257	mg/L	0.0010	103	85	115			
Copper	0.509	mg/L	0.010	102	85	115			
Iron	2.63	mg/L	0.030	105	85	115			
Lead	0.518	mg/L	0.010	104	85	115			
Manganese	2.51	mg/L	0.010	100	85	115			
Selenium	0.528	mg/L	0.0050	105	85	115			
Silicon	4.96	mg/L	0.10	99	85	115			
Silver	0.0512	mg/L	0.0050	102	85	115			
Strontium	0.501	mg/L	0.10	100	85	115			
Sample ID: H11060064-001DMS3	11 Sample Matrix	Spike			Run: ICPMS	S204-B_110607A		06/07/	/11 13:58
Arsenic	0.736	mg/L	0.0050	107	70	130			
Barium	0.535	mg/L	0.10	103	70	130			
Cadmium	0.252	mg/L	0.0010	101	70	130			
Copper	0.533	mg/L	0.010	100	70	130			
Iron	3.71	mg/L	0.030	104	70	130			

Qualifiers:

RL - Analyte reporting limit.

Helena, MT 877-472-0711 • Billings, MT 800-735-4489 • Casper, WY 888-235-0515 Gitlette, WY 866-686-7175 • Rapid City, SD 888-672-1225 • College Station, TX 888-690-2218

QA/QC Summary Report

Prepared by Helena, MT Branch

Client: Tetra Tech Inc

Report Date: 06/29/11

Project: E	DECH MILLI				.				лиer:	H1106006	04
Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E200.8									Bat	ch: 1244
Sample ID:	H11060064-001DMS3	11 Sa	mple Matrix	Spike			Run: ICPMS	S204-B_110607A		06/07	/11 13:5
Lead			0.522	mg/L	0.010	104	70	130			
Manganese			3.14	mg/L	0.010	99	70	130			
Selenium			0.768	mg/L	0.0050	110	70	130			
Silicon			13.4	mg/L	0.10	97	70	130			
Silver			0.0480	mg/L	0.0050	96	70	130			
Strontium			4.53	mg/L	0.10		70	130			Α
Sample ID:	H11060064-001DMSD	3 11 Sa	mple Matrix	Spike Duplicat	e		Run: ICPMS	S204-B_110607A		06/07	/11 14:0
Arsenic			0.724	mg/L	0.0050	105	70	130	1.6	20	
Barium			0.521	mg/L	0.10	100	70	130	2.7	20	
Cadmium			0.244	mg/L	0.0010	98	70	130	3.0	20	
Copper			0.515	mg/L	0.010	97	70	130	3.5	20	
lron			3.69	mg/L	0.030	103	70	130	0.6	20	
Lead			0.514	mg/L	0.010	103	70	130	1.5	20	
Manganese			3.09	mg/L	0.010	97	70	130	1.5	20	
Selenium			0.758	mg/L	0.0050	108	70	130	1.3	20	
Silicon			13.3	mg/L	0.10	95	70	130	0.5	20	
Silver			0.0471	mg/L	0.0050	94	70	130	1.9	20	
Strontium			4.43	mg/L	0.10		70	130	2.3	20	Α
Method:	E200.8									Batcl	h: R7162
Sample ID:	ICB	11 Me	thod Blank				Run: ICPMS	3204-B_110607A		06/07	/11 11:0
Arsenic			9E-05	mg/L	3E-05						
Barium			ND	mg/L	3E-05						
Cadmium			ND	mg/L	1 E -05						
Copper			ND	mg/L	3 E- 05						
Iron			0.002	mg/L	0.0002						
Lead			ND	mg/L	1.0E-05						
Manganese			ND	mg/L	1E-05						
Selenium			ND	mg/L	4E-05						
Silicon			ND	mg/L	0.0006						
Silver			4E-05	mg/L	3E-05						
Strontium			ND	mg/L	7E-06						
Sample ID:	LFB	11 La	boratory Forti	ified Blank			Run: ICPMS	3204-B_110607A		06/07	/11 11:12
Arsenic			0.0479	mg/L	0.0050	96	85	115			
Barium			0.0478	mg/L	0.10	96	85	115			
Cadmium			0.0470	mg/L	0.0010	94	85	115			
Copper			0.0470	mg/L	0.010	94	85	115			
Iron			4.84	mg/L	0.030	97	85	115			
Lead			0.0482	mg/L	0.010	96	85	115			
Manganese			0.0477	mg/L	0.010	95	85	115			
Selenium			0.0478	mg/L	0.0050	96	85	115			
Silicon			0.196	mg/L	0.10	98	85	115			

Qualifiers:

RL - Analyte reporting limit.

A - The analyte level was greater than four times the spike level. In accordance with the method % recovery is not calculated.

Helena, MT 677-472-0711 • Billings, MT 800-735-4489 • Casper, WY 888-235-0515 Gillette, WY 866-686-7175 • Rapid City, SD 888-672-1225 • College Station, TX 888-690-2218

QA/QC Summary Report

Prepared by Helena, MT Branch

Client: Tetra Tech Inc

Project: Beal Mtn

Report Date: 06/29/11

Work Order: H11060064

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: I	E200.8									Batcl	n: R71626
Sample ID: L	.FB	11 La	ooratory Fort	ified Blank			Run: ICPMS	S204-B_110607A		06/07	/11 11:12
Strontium			0.0492	mg/L	0.10	98	85	115			
Sample ID: H	111060099-001CMS	11 Sa	mple Matrix	Spike			Run: ICPMS	S204-B_110607A		06/07	/11 12:13
Arsenic			0.0485	mg/L	0.0050	96	70	130			
Barium			0.0566	mg/L	0.10	94	70	130			
Cadmium			0.0650	mg/L	0.0010	88	70	130			
Copper			0.0524	mg/L	0.010	91	70	130			
Iron			4.82	mg/L	0.030	96	70	130			
Lead			0.0484	mg/L	0.010	96	70	130			
Manganese			12.2	mg/L	0.010		70	130			Α
Selenium			0.0530	mg/L	0.0050	106	70	130			
Silicon			2.01	mg/L	0.10		70	130			Α
Silver			0.0177	mg/L	0.0050	88	70	130			
Strontium			0.603	mg/L	0.10		70	130			Α
Sample ID: H	I1 1060099-001 CMSE) 11 Sa	mple Matrix	Spike Duplicate			Run: ICPMS	S204-B_110607A		06/07	/11 12:17
Arsenic			0.0490	mg/L	0.0050	97	70	130	1.0	20	
Barium			0.0588	mg/L	0.10	99	70	130		20	
Cadmium			0.0670	mg/L	0.0010	92	70	130	3.1	20	
Copper			0.0522	mg/L	0.010	90	70	130	0.2	20	
Iron			4.81	mg/L	0.030	96	70	130	0.2	20	
Lead			0.0497	mg/L	0.010	99	70	130	2.7	20	
Manganese			12.5	mg/L	0.010		70	130	2.1	20	Α
Selenium			0.0528	mg/L	0.0050	105	70	130	0.4	20	
Silicon			1.98	mg/L	0.10		70	130	1.7	20	Α
Silver			0.0185	mg/L	0.0050	93	70	130	4.7	20	
Strontium			0.619	mg/L	0.10		70	130	2.6	20	Α
Sample ID: H	111060067-007CMS	11 Sa	mple Matrix	Spike			Run: ICPMS	S204-B_110607A		06/07	/11 16:22
Arsenic			0.0525	mg/L	0.0050	91	70	130			
Barium			0.0855	mg/L	0.10	93	70	130			
Cadmium			0.0468	mg/L	0.0010	93	70	130			
Copper			0.0601	mg/L	0.010	88	70	130			
Iron			4.66	mg/L	0.030	90	70	130			
Lead			0.0487	mg/L	0.010	97	70	130			
Manganese			0.105	mg/L	0.010	94	70	130			
Selenium			0.0470	mg/L	0.0050	94	70	130			
Silicon			9.35	mg/L	0.10		70	130			Α
Silver			0.0186	mg/L	0.0050	93	70	130			
Strontium			0.213	mg/L	0.10	97	70	130			

Qualifiers:

RL - Analyte reporting limit.

ND - Not detected at the reporting limit.

A - The analyte level was greater than four times the spike level. In accordance with the method % recovery is not calculated.

Helena, MT 877-472-0711 • Billings, MT 800-735-4489 • Casper, WY 888-235-0515 Gillette, WY 866-686-7175 • Rapid City, SD 888-672-1225 • College Station, TX 888-690-2218

QA/QC Summary Report

Prepared by Helena, MT Branch

Client: Tetra Tech Inc

Project: Beal Mtn

Report Date: 06/29/11

Work Order: H11060064

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E245.1					•		Analytic	al Run:	HGCV201-H	_110610A
Sample ID:	ICV	Init	ial Calibratio	n Verification	n Standard					06/10	/11 15:15
Mercury			0.00020	mg/L	0.00010	100	90	110			
Sample ID:	ccv	Co	ntinuing Cali	bration Verif	ication Standard					06/10	/11 15:18
Mercury			0.00020	mg/L	0.00010	98	90	110			
Method:	E245.1	<u> </u>						·		Bat	ch: 12501
Sample ID:	MB-12501	Me	thod Blank				Run: HGCV	201-H_110610A		06/10	/11 15:22
Mercury			ND	mg/L	3E-06						
Sample ID:	LCS-12501	Lat	ooratory Con	trol Sample			Run: HGCV	201-H_110610A		06/10/	/11 15:25
Mercury			0.00020	mg/L	0.00010	99	90	110			
Sample ID:	H11060067-011DMS	Sa	mple Matrix (Spike			Run: HGCV	201-H_110610A		06/10/	/11 16:15
Mercury			0.00027	mg/L	0.00010	107	70	130			
Sample ID:	H11060067-011DMSE) Sa	mple Matrix (Spike Duplic	ate		Run: HGCV	201-H_110610A		06/10/	/11 16:17
Mercury			0.00027	mg/L	0.00010	105	70	130	1.7	30	

Qualifiers:

RL - Analyte reporting limit.

Helena, MT 877-472-0711 • Billings, MT 800-735-4489 • Casper, WY 868-235-0515 Gillette, WY 866-\$86-7175 • Rapid City, SD 838-672-1225 • College Station, TX 888-680-2218

QA/QC Summary Report

Prepared by Helena, MT Branch

Client: Tetra Tech Inc Project: Beal Mtn Report Date: 06/29/11

Work Order: H11060064

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E300.0								Analytical F	lun: IC102-H	_110606A
Sample ID: ICV060611-12	2 Init	tial Calibratio	n Verification S	tandard					06/06	/11 12:05
Chloride		100	mg/L	1.0	103	90	110			
Sulfate		400	mg/L	1.0	101	90	110			
Sample ID: CCV060611-30	2 Co	ntinuing Cali	bration Verifica	tion Standard					06/06	/11 15:45
Chloride		100	mg/L	1.0	100	90	110			
Sulfate		390	mg/L	1.0	99	90	110			
Method: E300.0									Batcl	h: R 7 1609
Sample ID: ICB060611-13	2 Me	thod Blank				Run: IC102-	-H_110606A		06/06	/11 12:17
Chloride		0.3	mg/L	0.02						
Sulfate		ND	mg/L	0.02						
Sample ID: LFB060611-14	2 Lal	ooratory Fort	ified Blank			Run: IC102-	-H_110606A		06/06	/11 12:28
Chloride		49	mg/L	1.0	98	90	110			
Sulfate		190	mg/L	1.1	97	90	110			
Sample ID: LFBD060611-14	2 Lat	ooratory Fort	ified Blank			Run: IC102-	H_110606A		06/06	/11 12:40
Chloride		49	mg/L	1.0	98	90	110			
Sulfate		190	mg/L	1.1	96	90	110			
Sample ID: H11060067-003AM	6 2 Sa	mple Matrix :	Spike			Run: IC102-	H_110606A		06/06	/11 17:53
Chloride		58	mg/L	1.0	100	90	110			
Sulfate		220	mg/L	1.1	100	90	110			
Sample ID: H11060067-003AM	SD 2 Sa	mple Matrix S	Spike Duplicate			Run: IC102-	H_110606A		06/06	/11 18:05
Chloride		58	mg/L	1.0	98	90	110	1.3	20	
Sulfate		220	mg/L	1.1	98	90	110	1.6	20	

Qualifiers:

RL - Analyte reporting limit.

Prepared by Helena, MT Branch

Client: Tetra Tech Inc Project: Beal Mtn Report Date: 06/29/11
Work Order: H11060064

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E350.1		•					Analy	tical Run	: FIA203-HE	_110606B
Sample ID: ICV	Initia	al Calibratio	n Verification	Standard					06/07	/11 15:56
Nitrogen, Ammonia as N		1.04	mg/L	0.10	104	90	110			
Sample ID: CCV	Con	tinuing Cali	bration Verific	ation Standard					06/07	/11 15:59
Nitrogen, Ammonia as N		0.518	mg/L	0.10	104	90	110			
Sample ID: ICB	Initia	al Calibratio	n Blank, Instru	ument Blank					06/07	/11 16:01
Nitrogen, Ammonia as N		0.00238	mg/L	0.10		0	0			
Sample ID: CCV	Con	tinuing Cali	bration Verific	ation Standard					06/07	/11 16:20
Nitrogen, Ammonia as N		0.524	mg/L	0.10	105	90	110			
Sample ID: CCV	Con	tinuing Cali	bration Verific	ation Standard					06/07	/11 16:40
Nitrogen, Ammonia as N		0.529	mg/L	0.10	106	90	110			
Method: E350.1									Batcl	n: R71649
Sample ID: LCS	Labo	oratory Con	trol Sample			Run: FIA20	3-HE_110606B		06/07	/11 15:57
Nitrogen, Ammonia as N		16.5	mg/L	0.50	105	90	110			
Sample ID: LFB	Labo	oratory Forti	fied Blank			Run: FIA20	3-HE_110606B		06/07	/11 15:58
Nitrogen, Ammonia as N		1.03	mg/L	0.10	103	90	110			
Sample ID: MBLK	Meth	nod Blank				Run: FIA20	3-HE_110606B		06/07	/11 16:02
Nitrogen, Ammonia as N		ND	mg/L	0.03						
Sample ID: H11060067-001EMS	Sam	ple Matrix S	Spike			Run: FIA20	3-HE_110606B		06/07	/11 16:16
Nitrogen, Ammonia as N		0.988	mg/L	0.10	99	90	110			
Sample ID: H11060067-001EMSE) Sam	ple Matrix S	Spike Duplicat	ie		Run: FIA20	3-HE_110606B		06/07	/11 16:17
Nitrogen, Ammonia as N		1.01	mg/L	0.10	101	90	110	1.8	20	
Sample ID: H11060067-006EMS	Sam	ple Matrix S	Spike			Run: FIA20	3-HE_110606B		06/07	/11 16:27
Nitrogen, Ammonia as N		1.46	mg/L	0.10	85	90	110			S
Sample ID: H11060067-006EMSE) Sam	ple Matrix S	Spike Duplicat	te		Run: FIA20	3-HE_110606B		06/07	/11 16:28
Nitrogen, Ammonia as N		1.47	mg/L	0.10	86	90	110	1.0	20	S
Sample ID: H11060067-013EMS	Sam	ple Matrix S	Spike			Run: FIA20	3-HE_110606B		06/07	/11 16:45
Nitrogen, Ammonia as N		0.994	mg/L	0.10	99	90	110			
Sample ID: H11060067-013EMSD) Sam	ple Matrix S	Spike Duplicat	te		Run: FIA20	3-HE_110606B		06/07	/11 16:46
Nitrogen, Ammonia as N		1.01	mg/L	0.10	101	90	110	1.9	20	

Qualifiers:

RL - Analyte reporting limit.

S - Spike recovery outside of advisory limits.

Prepared by Helena, MT Branch

Project:	Beal Mtn	Work Order:	H11060064
Client:	Tetra Tech Inc	Report Date:	06/29/11

Analyte	Count Resu	lt Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E353.2			•			Anal	ytical Rur	: FIA203-HE	_110603A
Sample ID: ICV	Initial Caliba	ration Verification	n Standard					06/03	/11 14:17
Nitrogen, Nitrite as N	0.094	19 mg/L	0.050	95	90	110			
Sample ID: CCV	Continuing	Calibration Verif	ication Standard					06/03	/11 14:20
Nitrogen, Nitrite as N	0.50	09 mg/L	0.050	102	90	110			
Sample ID: ICB	Initial Calib	ration Blank, Inst	rument Blank					06/03	/11 14:22
Nitrogen, Nitrite as N	-0.0019	92 mg/L	0.050		0	0			
Method: E353.2								Batcl	n: R71533
Sample ID: LCS	Laboratory	Control Sample			Run: FIA20	3-HE_110603A		06/03	/11 14:18
Nitrogen, Nitrite as N	0.095	52 mg/L	0.050	95	90	110			
Sample ID: MBLK	Method Bla	nk			Run: FIA20	3-HE_110603A		06/03	/11 14:23
Nitrogen, Nitrite as N	N	D mg/L	0.04						
Sample ID: H11060064-002BMS	Sample Ma	trix Spike			Run: FIA20	3-HE_110603A		06/03	/11 14:26
Nitrogen, Nitrite as N	1.2	23 mg/L	0.050	85	90	110			S
Sample ID: H11060064-002BMSI	Sample Ma	trix Spike Duplic	ate		Run: FIA20	3-HE_110603A		06/03	/11 14:28
Nitrogen, Nitrite as N	1.2	22 mg/L	0.050	85	90	110	0.2	20	S

Prepared by Helena, MT Branch

Client: Tetra Tech Inc Project: Beal Mtn Report Date: 06/29/11
Work Order: H11060064

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E353.2							Analy	tical Run	: FIA203-HE	_110606A
Sample ID: ICV	lnit	ial Calibratio	n Verification (Standard					06/06	/11 13:00
Nitrogen, Nitrate+Nitrite as N		1.01	mg/L	0.050	101	90	110			
Sample ID: ICB	Init	ial Calibratio	n Blank, Instru	ment Blank					06/06	/11 13:06
Nitrogen, Nitrate+Nitrite as N		-0.00704	mg/L	0.050		0	0			
Sample ID: CCV	Co	ntinuing Cali	ibration Verifica	ation Standard					06/06	/11 13:25
Nitrogen, Nitrate+Nitrite as N		0.464	mg/L	0.050	93	90	110			
Sample ID: CCV	Co	ntinuing Cali	bration Verifica	ation Standard					06/06	/11 13:42
Nitrogen, Nitrate+Nitrite as N		0.469	mg/L	0.050	94	90	110			
Method: E353.2									Batch	n: R71586
Sample ID: LCS	Lab	oratory Con	trol Sample			Run: FIA20	3-HE_110606A		06/06	/11 13:01
Nitrogen, Nitrate+Nitrite as N		24.3	mg/L	0.20	100	90	110			
Sample ID: LFB	Lat	oratory Fort	ified Blank			Run: FIA20	3-HE_110606A		06/06	/11 13:03
Nitrogen, Nitrate+Nitrite as N		0.979	mg/L	0.050	98	90	110			
Sample ID: MBLK	Me	thod Blank				Run: FIA20	3-HE_110606A		06/06	/11 13:07
Nitrogen, Nitrate+Nitrite as N		ND	mg/L	0.01						
Sample ID: H11060059-001CMS	Sar	mple Matrix :	Spike			Run: FIA20	3-HE_110606A		06/06	/11 13:32
Nitrogen, Nitrate+Nitrite as N		1.04	mg/L	0.050	91	90	110			
Sample ID: H11060059-001CMSD) Sar	mple Matrix (Spike Duplicat	Э		Run: FIA20	3-HE_110606A		06/06	/11 13:34
Nitrogen, Nitrate+Nitrite as N		1.06	mg/L	0.050	93	90	110	2.3	20	
Sample ID: H11060067-002EMS	Sar	mple Matrix s	Spike			Run: FIA20	3-HE_110606A		06/06	/11 13:53
Nitrogen, Nitrate+Nitrite as N		1.19	mg/L	0.050	90	90	110			
Sample ID: H11060067-002EMSD) Sar	mple Matrix (Spike Duplicat	9		Run: FIA203	3-HE_110606A		06/06	/11 13:54
Nitrogen, Nitrate+Nitrite as N		1.21	mg/L	0.050	92	90	110	1.6	20	

Qualifiers:

 $\ensuremath{\mathsf{RL}}$ - Analyte reporting limit.

Helena, MT 877-472-0711 • Billings, MT 800-735-4489 • Casper, WY 888-235-0515 Gilletta, WY 866-686-7175 • Rapid City, SD 888-672-1225 • College Station, TX 888-690-2218

QA/QC Summary Report

Prepared by Helena, MT Branch

Client: Tetra Tech Inc

Report Date: 06/29/11

Project: Beal Mtn

Work Order: H11060064

Analyte	Count	Result	Units	RL.	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E365.1							Analy	ytical Run	: FIA202-HE	_110606B
Sample ID: ICV	Init	ial Calibratio	n Verificatio	on Standard					06/06	/11 14:41
Phosphorus, Total as P		0.241	mg/L	0.010	97	90	110			
Sample ID: ICB	Initi	ial Calibratio	n Blank, Ins	strument Blank					06/06/	11 14:47
Phosphorus, Total as P		-0.00218	mg/L	0.010		0	0			
Sample ID: CCV	Cor	ntinuing Cali	bration Ver	ification Standard					06/06/	11 15:33
Phosphorus, Total as P		0.254	mg/L	0.010	102	90	110			
Sample ID: CCV1	Cor	ntinuing Cali	bration Ver	ification Standard					06/06/	11 15:34
Phosphorus, Total as P		0.00568	mg/L	0.010	57	50	150			
Method: E365.1									Bat	ch: 12444
Sample ID: H11060059-001DMS	Sar	nple Matrix S	Spike			Run: FIA202	2-HE_110606B		06/06/	11 15:37
Phosphorus, Total as P		0.190	mg/L	0.010	95	90	110			
Sample ID: H11060059-001DMS) Sar	nple Matrix S	Spike Dupli	cate		Run: FIA202	2-HE_110606B		06/06/	11 15:38
Phosphorus, Total as P		0.194	mg/L	0.010	97	90	110	2.2	20	
Sample ID: MB-12444	Met	thod Blank				Run: FIA202	2-HE_110606B		06/06/	11 15:50
Phosphorus, Total as P		ND	mg/L	0.0010			_			
Sample ID: LCS-12444	Lab	oratory Con	trol Sample	ı		Run: FIA202	2-HE_110606B		06/06/	11 15:51
Phosphorus, Total as P		8.98	mg/L	0.020	107	90	110			

Qualifiers:

RL - Analyte reporting limit.

Helena, MT 677-472-0711 • Billings, MT 800-735-4489 • Casper, WY 888-235-0515 Gillette, WY 866-686-7175 • Rapid City, SD 888-672-1225 • College Station, TX 888-690-2218

QA/QC Summary Report

Prepared by Helena, MT Branch

Client: Tetra Tech Inc Project: Beal Mtn Report Date: 06/29/11

Work Order: H11060064

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E365.1							Analy	tical Run	: FIA202-HE	_110610A
Sample ID:	ICV	Init	ial Calibratio	n Verification St	andard					06/10/	/11 09:37
Phosphorus	s, Total as P		0.239	mg/L	0.010	96	90	110			
Sample ID:	CCV	Co	ntinuing Cali	bration Verificat	ion Standard					06/10/	/11 09:40
Phosphorus	, Total as P		0.253	mg/L	0.010	101	90	110			
Sample ID:	CCV1	Co	ntinuing Cali	bration Verificat	ion Standard					06/10/	/11 09:41
Phosphorus	, Total as P		0.00568	mg/L	0.010	57	50	150			
Sample ID:	ICB	Init	ial Calibratio	n Blank, Instrum	nent Blank					06/10/	/11 09:42
Phosphorus	s, Total as P		-0.00384	mg/L	0.010		0	0			
Method:	E365.1									Bat	ch: 12444
Sample ID:	H11060059-001DMS	Sa	mple Matrix	Spike			Run: FIA20	2-HE_110610A		06/10/	/11 10:32
Phosphorus	, Total as P		0.190	mg/L	0.010	94	90	110			
Sample ID:	H11060059-001DMSI	O Sai	mple Matrix	Spike Duplicate			Run: FIA202	2-HE_110610A		06/10/	/11 10:33
Phosphorus	, Total as P		0.195	mg/L	0.010	97	90	110	2.5	20	
Method:	E365.1									Bat	ch: 12503
Sample ID:	LCS-12503	Lat	oratory Con	trol Sample			Run: FIA20	2-HE_110610A		06/10/	/11 09:38
Phosphorus	, Total as P		8.61	mg/L	0.020	103	90	110			
Sample ID:	MB-12503	Me	thod Blank				Run: FIA202	2-HE_110610A	•	06/10/	/11 09:43
Phosphorus	, Total as P		ND	mg/L	0.0010						
Sample ID:	H11060067-001EMS	Sai	mple Matrix (Spike			Run: FIA202	2-HE_110610A		06/10/	/11 09:46
Phosphorus	, Total as P		0.170	mg/L	0.010	85	90	110			S
Sample ID:	H11060067-001EMSE) Sai	mple Matrix :	Spike Duplicate			Run: FIA202	2-HE_110610A		06/10/	/11 09:47
Phosphorus	, Total as P		0.177	mg/L	0.010	88	90	110	3.9	20	S
Sample ID:	H11060067-013EMS	Sai	mple Matrix s	Spike			Run: FIA202	2-HE_110610A		06/10/	/11 10:04
Phosphorus	, Total as P		0.184	mg/L	0.010	92	90	110			
Sample ID:	H11060067-013EMSE) Sai	mple Matrix :	Spike Duplicate			Run: FIA202	2-HE_110610A		06/10/	/11 10:05
Phosphorus	, Total as P		0.190	mg/L	0.010	95	90	110	3.3	20	

Qualifiers:

RL - Analyte reporting limit.

S - Spike recovery outside of advisory limits.

Prepared by Helena, MT Branch

Client: Tetra Tech Inc Project: Beal Mtn

Report Date: 06/29/11

Work Order: H11060064

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: Kelada mod								Analytic	cal Run: SUB	-B167106
Sample ID: ICV-1	Initia	l Calibratio	n Verification	Standard					06/13	/11 14:33
Cyanide, Total		0.153	mg/L	0.0050	102	90	110			
Method: Kelada mod									Batch	B_54631
Sample ID: LCS-54631	Labo	ratory Con	trol Sample			Run: SUB-E	167106		06/13	/11 14:39
Cyanide, Total		0.0987	mg/L	0.0050	99	90	110			
Sample ID: MB-54631	Meth	od Blank				Run: SUB-E	3167106		06/13	/11 14:50
Cyanide, Total		ND	mg/L	0.002						
Sample ID: B11060446-003EMS	Sam	ple Matrix :	Spike			Run: SUB-E	167106		06/13	/11 14:57
Cyanide, Total		0.0876	mg/L	0.0050	84	90	110			S
Sample ID: B11060446-003EMSI	Sam,	ple Matrix :	Spike Duplicat	te		Run: SUB-E	167106		06/13	/11 15:15
Cyanide, Total		0.0900	mg/L	0.0050	86	90	110	2.8	10	S
Method: Kelada mod								Analytic	cal Run: SUB	-B167670
Sample ID: ICV-1	Initia	l Calibratio	n Verification	Standard					06/22	/11 12:34
Cyanide, Total		0.158	mg/L	0.0050	106	90	110			
Method: Kelada mod									Batch	: B_54870
Sample ID: H11060304-001D	Sam	ple Matrix (Spike			Run: SUB-E	3167670		06/22	/11 14:41
Cyanide, Total		0.110	mg/L	0.0050	110	90	110			
Sample ID: LCS-54870	Labo	ratory Con	trol Sample			Run: SUB-E	3167670		06/22	/11 12:40
Cyanide, Total		0.0995	mg/L	0.0050	100	90	110			
Sample ID: MB-54870	Meth	od Blank				Run: SUB-E	3167670		06/22	/11 12:44
Cyanide, Total		ND	mg/L	0.002						
Sample ID: H11060304-001D	Sam	ple Matrix (Spike Duplicat	te		Run: SUB-E	3167670		06/22	/11 14:43
Cyanide, Total		0.109	mg/L	0.0050	109	90	110	0.9	10	

Qualifiers:

RL - Analyte reporting limit.

S - Spike recovery outside of advisory limits.

Helena, MT 877-472-0711 • Billings, MT 800-735-4489 • Casper, WY 888-235-0515
Gillette, WY 866-686-7175 • Rapid City, SD 888-672-1225 • College Station, TX 888-690-2218

Workorder Receipt Checklist

Tetra Tech Inc

Login completed by:	Tracy L. Lorash		Date	Received: 6/3/2011
Reviewed by:	BL2000\ablackburn		Re	eceived by: TLL
Reviewed Date:	6/8/2011			Carrier Hand Del name:
Shipping container/cooler in	good condition?	Yes 🗸	No 🗌	Not Present
Custody seals intact on shipp	oing container/cooler?	Yes	No 🔲	Not Present ☑
Custody seals intact on samp	ole bottles?	Yes	No 🗌	Not Present 🗹
Chain of custody present?		Yes 🗹	No 🗌	
Chain of custody signed whe	n relinquished and received?	Yes ✓	No 🗌	
Chain of custody agrees with	sample labels?	Yes 🔲	No 🏹	
Samples in proper container/	bottle?	Yes 🗹	No 🔲	
Sample containers intact?		Yes ✓	No 🔲	
Sufficient sample volume for	indicated test?	Yes √	No 🗌	
All samples received within h	olding time?	Yes ✓	No 🗌	
Container/Temp Blank tempe	erature:	1.5℃ On Ice		
Water - VOA vials have zero	headspace?	Yes 📋	No 🗌	No VOA vials submitted 🗹
Water - pH acceptable upon	receipt?	Yes 🗌	No 🏹	Not Applicable

Contact and Corrective Action Comments:

Sample Sump-3A - one of the 3 nitric preserved containers was received with no labeling on it. It was received in a Ziploc bag with all other Sump-3A samples, so it was logged in as such. Samples for Dissolved Metals/Hardness were subsampled, filtered, and preserved to pH <2 with 2 mL of nitric acid per 250 mL in the laboratory. According to 40CFR136, samples for Dissolved Metals should be filtered and preserved within 15 minutes of collection. TI 6/3/11.

ENERGY (3)	X.	Chain of Custody and Analytical Request Record	f Cust	ody an	d Ai	aly	tical	Redue	est R	000	ırd		Page	/ of /	
				PLEASE PRINT	RINT	(Prov	ride as m	(Provide as much information as possible.)	mation a	18 DO:	sible) } -		1
Company Name:	ne:			Project Name, PWS, Permit, Etc.	e, PWS	Permi	t, Etc.				Sampl	Sample Origin	EPA/Star	EPA/State Compliance:	
Tetra	Tech			প্র	Beal	144	3				State:	TE	Yes 🗌	□ %	
Report Mail Address:				Contact Name:	je.		Phone/Fax:	3X:] -	Email:		Sampler	Sampler: (Please Print)	Γ_
303 I	iene Str	- (J'M Maus	Man	n	James	james, Maus @ tetratech. Com	s@tes	なれれ	.ch.c	0~	H'm	1 Maus	
Invoice Address:	111	5760/		Invoice Contact & Phone:	tact & Pr	Tone:					Purch	Purchase Order:	Quote/B	Quote/Bottle Order:	\top
Same	e as obove	J		Same	e as	r	above						-	7719	
Special Rep	Special Report/Formats:			W		NLWS	11S RE(ANIALYSIS REQUESTED			1	Contact EL! prior to	itai	Shipped by: Lab	7
	ĺ	 		cainers S O B O D Solids S O Other Say Other	777	Camp			ED		<u>~</u>	for charges and scheduling – See Instruction Page		Cooler ID(s):	
		EUD/EU I (Electronic Data) Format:		of Con S W A Soils Biosss inking V	ישרן:	5/					⊃	Comments:		Receipt Temp	
Other:		LEVEL IV		eqyT e Type te <u>W</u> ti notiste hCl - W	>,,,,,,	den.	<i>7</i>		ΠA		Ú	So. Attached		On Ice:	\Box
				JN Jqms2 <u>A</u> gə <u>V</u>	1970)	10200	جهمداً د و احما	<u> </u>	33S	andard	^	Table 11		dy Seat outle	$\overline{}$
SAMPLE I	SAMPLE IDENTIFICATION (Name, Location, Interval, etc.)	Collection Date	Collection	MATRIX	5 KYN	10228	JONT HAN			18	I			Intact Y N Signature Y N Match	
1 SWMP - 3A	-3A	11-2-9	1345	7w	X	장·	정 정		*	×			29	≥ H11060069	2
Swmp			1425	75										אונד	
3 Duo	- 2	Ś	0000	7w	>		7			\geq				0 2	
4				-					z.	 				isi	
w.															
9														¥(O	·—· {
1														ΔV	
60														Y(O	ļ
6					-) <i>8</i> 1v	- (
10														7]	ļ
Custody	ļ	1	1112	Signature:	N.E.		A A	Received by (print):	<u>.</u>		Date/Time:		Signature:	Ire:	
Record MIST be	Refinquished by (print):	Date/Time:	1	Signature:	one:		Rec	Received by (print):	<u>.</u>		Date/Time:		Signature:	Jabi.	ੀ
Signed	Sample Disposal:	Return to Client:		Lab Disposal:	i			Vacy (or	LOUNE /	/ 9)]/2/ 	11:12	Signature	Table 7	Ŋ,

In certain circumstances, samples submitted to Energy Laboratories, Inc. may be subcontracted to other certified laboratories in order to complete the arbitishad use serves as notice of this possibility. All sub-contract data will be clearly notated on your analytical report.

Melt our weak either at wave encounted come for additional information downloadable fee schedule forms, and links

Leach Pad Samples 6 samples total for Table 11											
LEACHBAR	TABLE 11 LEACH PAD SOLUTION ANALYTICAL REQUIREMENTS										
Parameter	MDL (mg/L) ⁽¹⁾	Method No.	Max. Holding Time								
	Physicocl	nemical									
pН	0.1 s.u.	A4500	24 Hours								
Conductivity	1	A2510B	28 Days								
Total Dissolved Solids	10	A2540C	7 Days								
	Total Recovera	ible Metais ⁽²⁾									
Arsenic	0.005	E200.8	6 Months								
Barium	0.005	E200.8	6 Months								
Cadmium	0.00008	E200.8	6 Months								
Copper	0.01	E200.8	6 Months								
iron	0.03	E200.8	6 Months								
Lead	0.002	E200.8	6 Months								
Manganese	0.01	E200.8	6 Months								
Mercury	0.0001	E245.1	6 Months								
Selenium	0.005	E200.8	. 6 Months								
Sillcon	0.1	E200.8	6 Months								
Silver	0.0005	E200.8	6 Months								
Strontium	0.1	E200.8	6 Months								
	Dissolved	Metals									
Calcium	1	E200.7	6 Months								
Magnesium	1	E200.7	6 Months								
Potassium	1	E200.7	6 Months								
Sodium	1	E200.7	6 Months								
	Inorgar	nics									
Cyanide, total	0.005	SM4500 CN / 335.4	14 Days								
Cyanide, weak acid dissociable (WAD)	0.005	SM 4500	14 Days								
Thiocyanate	0.2	A4500	14 Days								
Alkalinity, total	4	A2320B	14 Days								
Chloride	11	E300.0	28 Days								
Sulfate	1	E300,0	28 Days								
Fluoride	0.1	A4500	28 Days								
	Nutrien	nts									
Ammonia (low level)	0.1	SM4500 NH3	28 Days								
Nitrogen, Nitrate+Nitrite as N	0.05	E353,2	28 Days								
Nitrite	0.05	E353.2	48 Hours								
Phosphorous, Total	0.01	E365.1	28 Days								

MDL = Method Detection Limit in milligrams per liter (mg/L). Leach pad solution to be analyzed for total recoverable metals for comparison to groundwater chemistry.

Helena, MT 877-472-0711 • Billings, MT 800-735-4489 • Casper, WY 888-235-0515 Gillette, WY 866-686-7175 • Rapid City, SD 888-672-1225 • College Station, TX 888-690-2218

ANALYTICAL SUMMARY REPORT

June 22, 2011

Tetra Tech Inc 303 Irene St Helena, MT 59601

Workorder No.: H11060066

Quote ID: H634 - Beal 2011 Site Wide Monitoring

Project Name: Beal Mtn

Energy Laboratories Inc Helena MT received the following 4 samples for Tetra Tech Inc on 6/3/2011 for analysis.

Sample ID	Client Sample ID	Collect Date Receive Date	Matrix	Test
H11060066-001	LPPZ-3	06/02/11 10:20 06/03/11	Aqueous	Metals by ICP/ICPMS, Tot. Rec. Cyanide, Free Cyanide, Total Manual Distillation Total Cyanide Digestion Cyanide, Weak Acid Dissociable WAD Cyanide Distillation Nitrogen, Ammonia Nitrogen, Nitrate + Nitrite Metals Digestion by EPA 200.2 Preparation for TDS Solids, Total Dissolved
H11060066-002	SBB-94-31	06/02/11 11:46 06/03/11	Aqueous	Same As Above
H11060066-003	SBB-88-25	06/02/11 13:15 06/03/11	Aqueous	Same As Above
H11060066-004	Dup-1	06/02/11 6:00 06/03/11	Aqueous	Same As Above

This report was prepared by Energy Laboratories, Inc., 3161 E. Lyndale Ave., Helena, MT 59604. Any exceptions or problems with the analyses are noted in the Laboratory Analytical Report, the QA/QC Summary Report, or the Case Narrative.

The results as reported relate only to the item(s) submitted for testing.

Wanda Johnson...

If you have any questions regarding these test results, please call.

Report Approved By:

Digitally signed by Wanda Johnson

Date: 2011.06.22 10:58:37 -06:00

www.energylab.com Analytical Excallence Since 1952

Helena, MT 877-472-0711 • Billings, MT 800-735-4489 • Casper, WY 888-235-0515 Gillette, WY 866-686-7175 • Rapid City, SD 888-672-1225 • College Station, TX 888-690-2218

CLIENT:

Tetra Tech Inc

Project:

Beal Mtn

Sample Delivery Group: H11060066

Report Date: 06/22/11

CASE NARRATIVE

Tests associated with analyst identified as ELI-B were subcontracted to Energy Laboratories, 1120 S. 27th St., Billings, MT, EPA Number MT00005.

Helena, MT 877-472-0711 • Billings, MT 800-735-4489 • Casper, WY 888-235-0515 Gillette, WY 866-686-7175 • Rapid City, SD 888-672-1225 • College Station, TX 888-690-2218

LABORATORY ANALYTICAL REPORT

Prepared by Helena, MT Branch

Client:

Tetra Tech Inc

Project:

Beal Mtn

Lab ID:

H11060066-001

Client Sample ID LPPZ-3

Report Date: 06/22/11

Collection Date: 06/02/11 10:20

DateReceived: 06/03/11

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL PROPERTIES							
Solids, Total Dissolved TDS @ 180 C	284	mg/L		10		A2540 C	06/03/11 15:13 / cmm
INORGANICS							
Cyanide, Total	ND	mg/L		0.005		Kelada mod	06/13/11 15:27 / eli-b
Cyanide, Free	NA	mg/L		0.20		A4500-CN-F	06/13/11 15:00 / eli-b
Cyanide, Weak Acid Dissociable	NA	mg/L		0.005		D2036C .	06/13/11 16:00 / eli-b
 The Total Cyanide was analyzed, and was less the Free Cyanide were not analyzed. 	an the repo	rting limit for W	eak Acid Dissocia	bie (WAD)	Cyanide ar	nd Free Cyanide.	WAD Cyanide and
NUTRIENTS							
Nitrogen, Ammonia as N	ND	mg/L		0.1		E350.1	06/07/11 16:10 / reh
Nitrogen, Nitrate+Nitrite as N	0.59	mg/L		0.05		E353.2	06/06/11 13:46 / reh
METALS, TOTAL RECOVERABLE							
Copper	0.003	mg/L		0.001		E200.8	06/07/11 14:50 / dck
Selenium	0.001	mg/L		0.001		E200.8	06/07/11 14:50 / dck

Report Definitions:

RL - Analyte reporting limit.

QCL - Quality control limit.

MCL - Maximum contaminant level.

Helena, MT 677-472-0711 • Billings, MT 800-735-4469 • Casper, WY 888-235-0515 Gillette, WY 866-686-7175 • Rapid City, SD 888-672-1225 • College Station, TX 888-690-2218

LABORATORY ANALYTICAL REPORT

Prepared by Helena, MT Branch

Client:

Tetra Tech Inc

Project:

Beal Mtn

Lab ID:

H11060066-002

Client Sample ID SBB-94-31

Report Date: 06/22/11

Collection Date: 06/02/11 11:46

DateReceived: 06/03/11

Matrix: Aqueous

Analyses	Result	Units	Qualifiers RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL PROPERTIES						
Solids, Total Dissolved TDS @ 180 C	296	mg/L	10		A2540 C	06/03/11 15:14 / cmm
INORGANICS						
Cyanide, Total	0.028	mg/L	0.005		Kelada mod	06/13/11 15:29 / eli-b
Cyanide, Free	ND	mg/L	0.20		A4500-CN-F	06/13/11 15:00 / eli-b
Cyanide, Weak Acid Dissociable	0.006	mg/L	0.005		D2036C	06/14/11 14:21 / eli-b
NUTRIENTS						
Nitrogen, Ammonia as N	ND	mg/L	0.1		E350.1	06/07/11 16:11 / reh
Nitrogen, Nitrate+Nitrite as N	1.86	mg/L	0.05		E353.2	06/06/11 13:47 / reh
METALS, TOTAL RECOVERABLE						
Copper	0.001	mg/L	0.001		E200.8	06/07/11 14:55 / dck
Selenium	0.007	mg/L	0.001		E200.8	06/07/11 14:55 / dck

Report Definitions:

RL - Analyte reporting limit.

QCL - Quality control limit.

MCL - Maximum contaminant level.

Helena, MT 877-472-0711 • Billings, MT 800-735-4489 • Casper, WY 888-235-0515 Gillette, WY 865-686-7175 • Rapid City, SD 888-672-1225 • College Station, TX 858-690-2218

LABORATORY ANALYTICAL REPORT

Prepared by Helena, MT Branch

Client:

Tetra Tech Inc

Project:

Beal Mtn

Lab ID:

H11060066-003

Client Sample ID SBB-88-25

Report Date: 06/22/11

Collection Date: 06/02/11 13:15

DateReceived: 06/03/11

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL PROPERTIES							
Solids, Total Dissolved TDS @ 180 C	324	mg/L		10		A2540 C	06/03/11 15:14 / cmm
INORGANICS							
Cyanide, Total	0.059	mg/L		0.005		Kelada mod	06/13/11 15:31 / eli-b
Cyanide, Free	ND	mg/L		0.20		A4500-CN-F	06/13/11 15:00 / eli-b
Cyanide, Weak Acid Dissociable	0.016	mg/L		0.005		D2036C	06/14/11 14:23 / eli-b
NUTRIENTS							
Nitrogen, Ammonia as N	ND	mg/L		0.1		E350.1	06/07/11 16:12 / reh
Nitrogen, Nitrate+Nitrite as N	1.00	mg/L		0.05		E353.2	06/06/11 13:48 / reh
METALS, TOTAL RECOVERABLE							
Copper	0.002	mg/L		0.001		E200.8	06/07/11 14:59 / dck
Selenium	0.006	mg/L		0.001		E200.8	06/07/11 14:59 / dck

Report Definitions: RL - Analyte reporting limit.

QCL - Quality control limit.

MCL - Maximum contaminant level. ND - Not detected at the reporting limit.

Helena, MT 877-472-0711 • Billings, MT 800-735-4489 • Casper, WY 888-235-0515 Gillette, WY \$66-\$86-7175 • Rapid City, SD \$88-672-1225 • College Station, TX 888-690-2218

LABORATORY ANALYTICAL REPORT

Prepared by Helena, MT Branch

Client:

Tetra Tech Inc

Project:

Beal Mtn

Lab ID:

H11060066-004

Client Sample ID Dup-1

Report Date: 06/22/11

Collection Date: 06/02/11 06:00

DateReceived: 06/03/11

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL PROPERTIES							
Solids, Total Dissolved TDS @ 180 C	331	mg/L		10		A2540 C	06/03/11 15:14 / cmm
INORGANICS							
Cyanide, Total	0.054	mg/L		0.005		Kelada mod	06/13/11 15:33 / eli-b
Cyanide, Free	ND	mg/L		0.20		A4500-CN-F	06/13/11 15:00 / eli-b
Cyanide, Weak Acid Dissociable	0.024	mg/L		0.005		D2036C	06/14/11 14:24 / eli-b
NUTRIENTS							
Nitrogen, Ammonia as N	ND	mg/L		0.1		E350.1	06/07/11 16:14 / reh
Nitrogen, Nitrate+Nitrite as N	1.00	mg/L		0.05		E353.2	06/06/11 13:49 / reh
METALS, TOTAL RECOVERABLE							
Copper	0.002	mg/L		0.001		E200.8	06/07/11 15:03 / dck
Selenium	0.007	mg/L		0.001		E200.8	06/07/11 15:03 / dck

Report Definitions: RL - Analyte reporting limit.

QCL - Quality control limit.

MCL - Maximum contaminant level.

Helena, MT 877-472-0711 • Billings, MT 800-735-4489 • Casper, WY 888-235-0515 Gillette, WY 866-686-7175 • Rapid City, SD 888-672-1225 • College Station, TX 888-690-2218

QA/QC Summary Report

Prepared by Helena, MT Branch

Client: Tetra Tech Inc Project: Beal Mtn Report Date: 06/22/11

Work Order: H11060066

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: A2540 C									Bat	ch: 1243
Sample ID: MB-12439	Me	thod Blank				Run: ACCU	-124 (14410200)_110603	3 06/03	/11 15:11
Solids, Total Dissolved TDS @ 180	С	3	mg/L	1.0						
Sample ID: LCS-12439	Lal	oratory Con	trol Sample			Run: ACCU	-124 (14410200)_110603	06/03	/11 15:1
Solids, Total Dissolved TDS @ 180	С	1980	mg/L	10	99	90	110			
Sample ID: H11060064-001ADUP	Sa	mple Duplica	ate			Run: ACCU	-124 (14410200)_110603	06/06	/11 16:46
Solids, Total Dissolved TDS @ 180	С	3450	mg/L	10				2.3	5	
Sample ID: H11060064-002AMS	Sa	mple Matrix S	Spike			Run: ACCU	-124 (14410200)_110603	3 06/03	/11 15:1:
Solids, Total Dissolved TDS @ 180	С	4680	mg/L	10	97	80	120	-		

Helena, MT 877-472-0711 • Billings, MT 800-735-4489 • Casper, WY 868-235-0515 Gillette, WY 866-686-7175 • Rapid City, SD 888-672-1225 • College Station, TX 888-690-2218

QA/QC Summary Report

Prepared by Helena, MT Branch

Client: Tetra Tech Inc

Report Date: 06/22/11

Charles Total Total							поро	I C D LLC	OOLLI	
Project: Beal Mtn							Worl	Order:	: H1106006	66
Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qua
Method: D2036C	**								Batch	: B_54

Allalyte	Court Aesuit Offits	nL.	MIEC LO	w minute Lii	ցուտու	חרט	RPDLIMIT Quai
Method: D2036C							Batch: B_54656
Sample ID: B11060447-002EMSD	Sample Matrix Spike Duplicate	e	Rur	n: SUB-B167	173		06/14/11 14:50
Cyanide, Weak Acid Dissociable	0.0960 mg/L	0.0050	92	80	120	0.9	10
Sample ID: LCS-54656	Laboratory Control Sample		Rur	n: SUB-B167	173		06/14/11 13:49
Cyanide, Weak Acid Dissociable	0.0967 mg/L	0.0050	97	90	110		
Sample ID: MB-54656	Method Blank		Rur	n: SUB-B167	173		06/14/11 13:50
Cyanide, Weak Acid Dissociable	ND mg/L	0.002					
Sample ID: B11060447-002EMS	Sample Matrix Spike		Rur	n: SUB-B167	173		06/14/11 14:48
Cyanide, Weak Acid Dissociable	0.0952 mg/L	0.0050	91	80	120		

Helena, MT 677-472-0711 • Billings, MT 800-735-4489 • Casper, WY 888-235-0515 Gillette, WY 866-686-7175 • Rapid City, SD 888-672-1225 • College Station, TX 888-690-2218

QA/QC Summary Report

Prepared by Helena, MT Branch

Client: Tetra Tech Inc Project: Beal Mtn Report Date: 06/22/11

Work Order: H11060066

Analyte	·	Coun	t Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E200.8							Analytic	al Run: l	CPMS204-B	_110607/
Sample ID:	ICV STD	2	Initial Calibration	Nerification	Standard					06/07	/11 10:26
Copper			0.0513	mg/L	0.010	103	90	110			
Selenium			0.0509	mg/L	0.0050	102	90	110			
Sample ID:	ICSA	2	Interference Ch	eck Sample A						06/07	/11 10:30
Copper			0.000591	mg/L	0.010						
Selenium			0.000220	mg/L	0.0050						
Sample ID:	ICSAB	2	Interference Ch	eck Sample A	ΔB					06/07	/11 10:35
Copper			0.0216	mg/L	0.010	108	70	130			
Selenium			0.0112	mg/L	0.0050	112	70	130			
Sample ID:	ICV STD	2	Initial Calibration	Verification	Standard					06/07	/11 20:22
Copper			0.0510	mg/L	0.010	102	90	110			
Selenium			0.0498	mg/L	0.0050	100	90	110			
Sample ID:	ICSA	2	Interference Ch	eck Sample A	i					06/07	/11 20:27
Copper			0.000612	mg/L	0.010						
Selenium			0.000257	mg/L	0.0050						
Sample ID:	ICSAB	2	Interference Ch	eck Sample A	B					06/07	/11 20:31
Copper			0.0214	mg/L	0.010	107	70	130			
Selenium			0.0105	mg/L	0.0050	105	70	130			
Sample ID:	ICSA	2	Interference Ch	eck Sample A						06/08	/11 13:15
Copper			0.000462	mg/L	0.010						
Selenium			6.60E-05	mg/L	0.0050						
Sample ID:	ICSAB	2	Interference Ch	eck Sample A	В					06/08	/11 13:19
Copper			0.0219	mg/L	0.010	109	70	130			
Selenium			0.0116	mg/L	0.0050	116	70	130			
Method:	E200.8									Bat	ch: 12447
Sample ID:	MB-12447	2	Method Blank				Run: ICPMS	204-B_110607A		06/07	/11 13:19
Copper			ND	mg/L	0.0004						
Selenium			ND	mg/L	0.0002						
Sample ID:	LCS-12447	2	Laboratory Cont	rol Sample			Run: ICPMS	3204-B_110607A		06/07	/11 13:23
Copper			0.509	mg/L	0.010	102	85	115			
Selenium			0.528	mg/L	0.0050	105	85	115			
Sample ID:	H11060064-001DMS3	2 :	Sample Matrix S	pike			Run: ICPMS	3204-B_110607A		06/07	/11 13:58
Copper			0.533	mg/L	0.010	100	70	130			
Selenium			0.768	mg/L	0.0050	110	70	130			
Sample ID:	H11060064-001DMSD3	2 :	Sample Matrix S	pike Duplicat	e		Run: ICPMS	3204-B_110607A		06/07	/11 14:02
Copper			0.515	mg/L	0.010	97	70	130	3.5	20	
Selenium			0.758	mg/L	0.0050	108	70	130	1.3	20	

Qualifiers:

RL - Analyte reporting limit.

Helena, MT 677-472-0711 • Billings, MT 800-735-4489 • Casper, WY 888-235-0515 Gillette, WY 856-686-7175 • Rapid City, SD 888-672-1225 • College Station, TX 888-690-2218

70

130

QA/QC Summary Report

Prepared by Helena, MT Branch

Client: Tetra Tech Inc
Project: Beal Mtn

Selenium

Report Date: 06/22/11

Work Order: H11060066

Analyte		Count	Result	Units	RL	%RFC	Low Limit	High Limit	RPD	RPDLimit	Qual
		Octain	ricoun		142	/GILO	LOW LIMIT		HIFD	TIFULITIE	Guai
Method:	E200.8									Batcl	n: R71626
Sample ID:	ICB	2 M	ethod Blank				Run: ICPMS	3204-B_110607A		06/07	/11 11:07
Copper			ND	mg/L	3E-05						
Selenium			ND	mg/L	4E-05						
Sample ID:	LFB	2 La	boratory Fort	ified Blank			Run: ICPMS	S204-B_110607A		06/07	/11 11:12
Copper			0.0470	mg/L	0.010	94	85	115			
Selenium			0.0478	mg/L	0.0050	96	85	115			
Sample ID:	H11060067-007CMS	2 Sa	mple Matrix s	Spike			Run: ICPMS	S204-B_110607A		06/07	/11 16:22
Copper			0.0601	mg/L	0.010	88	70	130			

0.0050

94

0.0470

mg/L

Helena, MT 577-472-0711 • Billings, MT 800-735-4488 • Casper, WY 888-235-0515 Gillette, WY 866-686-7175 • Rapid City, SD 888-672-1225 • College Station, TX 888-690-2218

QA/QC Summary Report

Prepared by Helena, MT Branch

Client: Tetra Tech Inc Project: Beal Mtn Report Date: 06/22/11

Work Order: H11060066

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E350.1							Analy	tical Rur	: FIA203-HE	_110606B
Sample ID: ICV	Initia	l Calibration	n Verification Star	ndard					06/07	/11 15:56
Nitrogen, Ammonia as N		1.04	mg/L	0.10	104	90	110			
Sample ID: CCV	Cont	inuing Cali	bration Verificatio	n Standard					06/07	/11 15:59
Nitrogen, Ammonia as N		0.518	mg/L	0.10	104	90	110			
Sample ID: ICB	Initia	l Calibration	n Blank, Instrume	nt Blank					06/07	/11 16:01
Nitrogen, Ammonia as N		0.00238	mg/L	0.10		0	0			
Method: E350.1									Batch	n: R71649
Sample ID: LCS	Labo	ratory Con	trol Sample			Run: FIA20	3-HE_110606B		06/07	/11 15:57
Nitrogen, Ammonia as N		16.5	mg/L	0.50	105	90	110			
Sample ID: LFB	Labo	ratory Forti	ified Blank			Run: FIA20	3-HE_110606B		06/07	/11 15:58
Nitrogen, Ammonia as N		1.03	mg/L	0.10	103	90	110			
Sample ID: MBLK	Meth	od Blank				Run: FIA203	3-HE_110606B		06/07	/11 16:02
Nitrogen, Ammonia as N		ND	mg/L	0.03						
Sample ID: H11060067-001EMS	Sam	ple Matrix 9	Spike			Run: FIA203	3-HE_110606B		06/07	/11 16:16
Nitrogen, Ammonia as N		0.988	mg/L	0.10	99	90	110			
Sample ID: H11060067-001EMSD) Sam	ple Matrix S	Spike Duplicate			Run: FIA203	3-HE_110606B		06/07	/11 16:17
Nitrogen, Ammonia as N		1.01	mg/L	0.10	101	90	_ 110	1.8	20	

Qualifiers:

RL - Analyte reporting limit.

Helena, MT 677-472-0711 • Billings, MT 800-735-4489 • Casper, WY 868-235-0515 Gillette, WY 866-686-7175 • Rapid City, SD 888-672-1225 • College Station, TX 888-690-2218

QA/QC Summary Report

Prepared by Helena, MT Branch

Client: Tetra Tech Inc

Project: Beal Mtn

Report Date: 06/22/11

Work Order: H11060066

Analyte	Count Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E353.2						Analy	tical Rur	: FIA203-HE	110606A
Sample ID: ICV	Initial Calibrat	ion Verification S	Standard					06/06	/11 13:00
Nitrogen, Nitrate+Nitrite as N	1.01	mg/L	0.050	101	90	110			
Sample ID: ICB	Initial Calibrat	ion Blank, Instru	ment Blank					06/06	/11 13:06
Nitrogen, Nitrate+Nitrite as N	-0.00704	mg/L	0.050		0	0			
Sample ID: CCV	Continuing Ca	alibration Verifica	ation Standard					06/06	/11 13:42
Nitrogen, Nitrate+Nitrite as N	0.469	mg/L	0.050	94	90	110			
Method: E353.2								Batc	h: R 7 1586
Sample ID: LCS	Laboratory Co	ontrol Sample			Run: FIA20	3-HE_110606A		06/06	/11 13:01
Nitrogen, Nitrate+Nitrite as N	24.3	mg/L	0.20	100	90	110			
Sample ID: LFB	Laboratory Fo	rtified Blank			Run: FIA20	3-HE_110606A		06/06	/11 13:03
Nitrogen, Nitrate+Nitrite as N	0.979	mg/L	0.050	98	90	110			
Sample ID: MBLK	Method Blank				Run: FIA20	3-HE_110606A		06/06	/11 13:07
Nitrogen, Nitrate+Nitrite as N	ND	mg/L	0.01						
Sample ID: H11060067-002EMS	Sample Matrix	k Spike			Run: FIA20	3-HE_110606A		06/06	/11 13:53
Nitrogen, Nitrate+Nitrite as N	1.19	mg/L	0.050	90	90	110			
Sample ID: H11060067-002EMSD	Sample Matrix	k Spike Duplicate	9		Run: FIA20	3-HE_110606A		06/06	/11 13:54
Nitrogen, Nitrate+Nitrite as N	1.21	mg/L	0.050	92	90	110	1.6	20	

Qualifiers:

RL - Analyte reporting limit.

Helena, MT 877-472-0711 • Billings, MT 800-735-4489 • Casper, WY 888-235-0515 Gilletta, WY 865-586-7175 • Rapid City, SD 888-672-1225 • College Station, TX 888-690-2218

QA/QC Summary Report

Prepared by Helena, MT Branch

Client: Tetra Tech Inc

Project: Beal Mtn

Report Date: 06/22/11

Work Order: H11060066

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: Kelada mod								Analyti	al Run: SUB	-B167106
Sample ID: ICV-1	Initia	al Calibratio	n Verification Sta	andard					06/13	/11 14:33
Cyanide, Total		0.153	mg/L	0.0050	102	90	110			
Method: Kelada mod									Batch	B_54631
Sample ID: LCS-54631	Lab	oratory Con	trol Sample			Run: SUB-E	3167106		06/13	/11 14:39
Cyanide, Total		0.0987	mg/L	0.0050	99	90	110			
Sample ID: MB-54631	Met	hod Blank				Run: SUB-E	3167106		06/13	/11 14:50
Cyanide, Total		ND	mg/L	0.002						
Sample ID: B11060446-003EMS	Sam	nple Matrix S	Spike			Run: SUB-B	3167106		06/13	/11 14:57
Cyanide, Total		0.0876	mg/L	0.0050	84	90	110			S
Sample ID: B11060446-003EMSD) Sam	nple Matrix S	Spike Duplicate			Run: SUB-B	3167106		06/13	/11 15:15
Cyanide, Total		0.0900	mg/L	0.0050	86	90	110	2.8	10	s

Helena, MT 877-472-0711 • Billings, MT 800-735-4489 • Casper, WY 888-235-0515
Gillette, WY 866-686-7175 • Rapid City, SD 888-672-1225 • College Station, TX 888-690-2218

Workorder Receipt Checklist

H11060066

Tetra Tech Inc

Login completed by:	racy L. Lorasn		Date	Received: 6/3/2011	
Reviewed by:	BL2000\ablackburn		Re	eceived by: TLL	
Reviewed Date:	6/8/2011			Carrier Hand Del name:	
Shipping container/cooler in	good condition?	Yes ✓	No 🗌	Not Present	
Custody seals intact on ship	ping container/cooler?	Yes 🔲	No 🗌	Not Present ✓	
Custody seals intact on sam	ple bottles?	Yes 🔲	No 🗌	Not Present ✓	
Chain of custody present?		Yes 🗹	No 🗀		
Chain of custody signed who	en relinquished and received?	Yes ✓	No 🗌		
Chain of custody agrees wit	h sample labels?	Yes ✓	No 🗌		
Samples in proper container	/bottle?	Yes ✓	No 🔲		
Sample containers intact?		Yes 🗹	No 🔲		
Sufficient sample volume for	r indicated test?	Yes 🗹	No 🗌		
All samples received within i	holding time?	Yes 🗹	No 🗌		
Container/Temp Blank temp	erature:	1.5℃			
Water - VOA vials have zero	headspace?	Yes 🔲	No 🗔	No VOA vials submitted	
Nater - pH acceptable upon	receipt?	Yes 🗸	No 🗀	Not Applicable	

Contact and Corrective Action Comments:

None

ENERGY (3)	Chain of Cus		ody and	d An	alytic	ody and Analytical Request Record	st Re	COL	75	Page	T of
			PLEASE PRINT	l	Provide a	(Provide as much information as possible.)	nation as	possi	ole.)		
1			Project Name, PWS, Permit, Etc.	75	ermit, Etc	i 		Š	Ö	EPA/Stat	EPA/State Compliance:
tetra tech			Beal	at alal	, İ			જ	State: \mathcal{M}	Υes	 ₽
Report Mail Address:	7		⊆	;e		Phone/Fax:		ďŪ	Email:	Sampler	Sampler: (Please Print)
303 Irene 37	3+ree1 5960]		Jim Ma 443-5210	Mams 210		james. Maus @tetratecho	s @ test	a te	, com	Lin	m Maus
			Invoice Contact & Phone	act & Pho	ne:			<u>a</u>	Purchase Order:	Quote	Quote Bottle Order:
some as above	J		Some		as ab	above					2717
Special Report/Formats:			M	ANA		ANALYSIS REQUESTIED	<u></u>		Contact ELI prior to RUSH sample submittal	nittal	shipped by: Land del
i C	 		rtainers S V B O D Solids say <u>O</u> ther Vater	y stals			IED		For charges and scheduling – See Instruction Page		Cooler ID(s):
POTW/WWTP	Format:		of Cor Y A W T <u>S</u> oils Bioss Inking /	1719			LACH	Punoje) Comments:		Receipt Yemp
Other:	☐ LEVEL IV		nber Type tetion totist	over	٤.		ΤΤΑ		- Attack	L	On Ice: Y (N
			nuM elqms∂ ni <u>A</u> ege⊻ NG	05.650 Percol	اعدن د دارسها		SEE.	brabard	Table		Custody Seal On Bottie On Cooler Y
SAMPLE IDENTIFICATION (Name Location, Interval etc.)	Collection	Collection	MATRIX	izy Aq LotoI	growt					<u> </u>	Intact Y N Signature Y N Match
1-2007	6	1020	3 7	<u>لا</u>	조		₹	8			9009011HE
2 588-94.31		9411	37	-	-					OB G	
3 SBB - 88-25		13/5	3								0.5
4 Duo-1	>	0600	_	> >	>		\mathbb{A}	7			TSA
3					•						A.C.
9											40
4									ı		
6							-				YO:
o.											
10											ח
Custody Reinquished by (print)		me;	Signature:	ig N		Received by (print)		Date	Date/Time:	Signature	, (
Record Relinquished by (print):	nt): Date/Time:	те:	Signature:	ë		Received by (print):		Date	Date/Time:	Slonature:	(e.)
Signed Sample Disposed:	Return to Ollent:		ab Disposal	 		Received by Laboratory:	Parolis (Date 6/6	Date/1m/f (1):(2	eignature)	acy

In certain circumstances, samples submitted to Energy Laboratories, Inc. may be subcontracted to other certified laboratories, in order to complete the analysis requested.

This serves as notice of this possibility. All sub-contract data will be clearly notated on your analytical report.

each Pad Area Groundwater & samples X 2 events for Table 7									
LEACH PAD AREA	TABLE GROUNDWATER	7 ANALYTICAL REQUIR	EMENTS						
Parameter	MDL (mg/L) ⁽¹⁾	Method No.	Max. Holding Time						
, I districted	Physicoche	emical							
Total Dissolved Solids	1 10	A2540C	7 Days						
Total Diagorada Conda	Metals	(2)							
0	0.001	E200.8	6 Months						
Copper	0.001	E200.8	6 Months						
Selenium	Inorgan	iics							
Ownida food	0.2	SM4500 CN F	14 Days						
Cyanide, free	0.005	SM4500 CN / 335.4	14 Days						
Cyanide, total	0.005	SM 4500	14 Days						
Cyanide, weak acid dissociable (WAD)	Nutrie		1.						
		SM4500 NH3	28 Days						
Ammonia (low level)	0.1		28 Days						
Nitrogen, Nitrate+Nitrite as N	0.05	E353.2	20 Days						

MDL = Method Detection Limit in milligrams per liter (mg/L). Groundwater to be analyzed for total recoverable metals for comparison to leach pad chemistry.

ANALYTICAL SUMMARY REPORT

July 06, 2011

Tetra Tech Inc 303 Irene St Helena, MT 59601

Workorder No.: H11060340 Quote ID: H634 - Beal 2011 Site Wide Monitoring

Project Name: Beal Mtn

Energy Laboratories Inc Helena MT received the following 3 samples for Tetra Tech Inc on 6/17/2011 for analysis.

Sample ID	Client Sample ID	Collect Date Receive Date	Matrix	Test
H11060340-001	SBB-91-29	06/16/11 12:15 06/17/11	Aqueous	Metals by ICP/ICPMS, Tot. Rec. Cyanide, Free Cyanide, Total Manual Distillation Total Cyanide Digestion Cyanide, Weak Acid Dissociable WAD Cyanide Distillation Nitrogen, Ammonia Nitrogen, Nitrate + Nitrite Metals Digestion by EPA 200.2 Preparation for TDS Solids, Total Dissolved
H11060340-002	SBB-87-02	06/16/11 16:35 06/17/11	Aqueous	Metals by ICP/ICPMS, Dissolved Alkalinity Conductivity Hardness as CaCO3 Anions by Ion Chromatography pH
H11060340-003	WRMW-1	06/16/11 13:50 06/17/11	Aqueous	Same As Above

This report was prepared by Energy Laboratories, Inc., 3161 E. Lyndale Ave., Helena, MT 59604. Any exceptions or problems with the analyses are noted in the Laboratory Analytical Report, the QA/QC Summary Report, or the Case Narrative.

The results as reported relate only to the item(s) submitted for testing.

If you have any questions regarding these test results, please call.

Report Approved By:

Helena, MT 877-472-0711 • Billings, MT 800-735-4489 • Casper, WY 888-235-0515
Gillette, WY 866-686-7175 • Rapid City, SD 888-672-1225 • College Station, TX 888-690-2218

Report Date: 07/06/11

CLIENT: Tetra Tech Inc

Project: Beal Mtn

Sample Delivery Group: H11060340 CASE NARRATIVE

Tests associated with analyst identified as ELI-B were subcontracted to Energy Laboratories, 1120 S. 27th St., Billings, MT, EPA Number MT00005.

LABORATORY ANALYTICAL REPORT

Prepared by Helena, MT Branch

Client: Tetra Tech Inc
Project: Beal Mtn
Lab ID: H11060340-001

Client Sample ID SBB-91-29

Report Date: 07/06/11 **Collection Date:** 06/16/11 12:15 **DateReceived:** 06/17/11

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL PROPERTIES							
Solids, Total Dissolved TDS @ 180 C	1060	mg/L		10		A2540 C	06/20/11 15:05 / cmm
INORGANICS							
Cyanide, Total	0.341	mg/L	D	0.006		Kelada mod	06/28/11 14:30 / eli-b
Cyanide, Free	ND	mg/L		0.20		A4500-CN-F	06/29/11 17:02 / eli-b
Cyanide, Weak Acid Dissociable	0.098	mg/L		0.005		D2036C	06/28/11 12:33 / eli-b
NUTRIENTS							
Nitrogen, Ammonia as N	ND	mg/L		0.1		E350.1	06/22/11 12:44 / reh
Nitrogen, Nitrate+Nitrite as N	3.12	mg/L		0.05		E353.2	06/20/11 11:24 / reh
METALS, TOTAL RECOVERABLE							
Copper	ND	mg/L		0.001		E200.8	06/23/11 19:01 / dck
Selenium	0.008	mg/L		0.001		E200.8	06/23/11 19:01 / dck

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

 $\ensuremath{\mathsf{D}}$ - $\ensuremath{\mathsf{RL}}$ increased due to sample matrix.

MCL - Maximum contaminant level.

LABORATORY ANALYTICAL REPORT

Prepared by Helena, MT Branch

Client: Tetra Tech Inc
Project: Beal Mtn
Lab ID: H11060340-003

 Lab ID:
 H11060340-002

 Client Sample ID
 SBB-87-02

Report Date: 07/06/11 **Collection Date:** 06/16/11 16:35 **DateReceived:** 06/17/11

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL PROPERTIES							
рH	7.9	s.u.		0.1		A4500-H B	06/17/11 23:25 / zeg
Conductivity	1550	umhos/cm		1		A2510 B	06/17/11 16:06 / cmm
INORGANICS							
Alkalinity, Total as CaCO3	56	mg/L		4		A2320 B	06/17/11 23:25 / zeg
Sulfate	840	mg/L	D	5		E300.0	06/30/11 15:31 / zeg
Hardness as CaCO3	816	mg/L		1		A2340 B	06/29/11 15:39 / abb
METALS, DISSOLVED							
Arsenic	ND	mg/L		0.005		E200.8	06/23/11 19:05 / dck
Barium	ND	mg/L		0.1		E200.8	06/23/11 19:05 / dck
Cadmium	ND	mg/L		0.001		E200.8	06/23/11 19:05 / dck
Calcium	290	mg/L		1		E200.8	06/23/11 19:05 / dck
Chromium	ND	mg/L		0.01		E200.8	06/23/11 19:05 / dck
Lead	ND	mg/L		0.01		E200.8	06/23/11 19:05 / dck
Magnesium	22	mg/L		1		E200.8	06/23/11 19:05 / dck
Mercury	ND	mg/L		0.001		E200.8	06/23/11 19:05 / dck
Selenium	0.008	mg/L		0.005		E200.8	06/23/11 19:05 / dck
Silver	ND	mg/L		0.005		E200.8	06/23/11 19:05 / dck

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

 $\ensuremath{\mathsf{D}}$ - $\ensuremath{\mathsf{RL}}$ increased due to sample matrix.

MCL - Maximum contaminant level.

 $\ensuremath{\mathsf{ND}}$ - $\ensuremath{\mathsf{Not}}$ detected at the reporting limit.

LABORATORY ANALYTICAL REPORT

Prepared by Helena, MT Branch

Client: Tetra Tech Inc
Project: Beal Mtn
Lab ID: H11060340-003

Lab ID: H11060340-Client Sample ID WRMW-1 Report Date: 07/06/11
Collection Date: 06/16/11 13:50
DateReceived: 06/17/11

Matrix: Aqueous

					MCL/		
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By
PHYSICAL PROPERTIES							
pH	7.5	s.u.		0.1		A4500-H B	06/17/11 23:32 / zeg
Conductivity	1700	umhos/cm		1		A2510 B	06/17/11 16:07 / cmm
INORGANICS							
Alkalinity, Total as CaCO3	91	mg/L		4		A2320 B	06/17/11 23:32 / zeg
Sulfate	950	mg/L	D	5		E300.0	06/30/11 15:42 / zeg
Hardness as CaCO3	951	mg/L		1		A2340 B	06/29/11 15:39 / abb
METALS, DISSOLVED							
Arsenic	ND	mg/L		0.005		E200.8	06/23/11 19:28 / dck
Barium	ND	mg/L		0.1		E200.8	06/23/11 19:28 / dck
Cadmium	ND	mg/L		0.001		E200.8	06/23/11 19:28 / dck
Calcium	351	mg/L		1		E200.8	06/29/11 18:44 / dck
Chromium	ND	mg/L		0.01		E200.8	06/23/11 19:28 / dck
Lead	ND	mg/L		0.01		E200.8	06/23/11 19:28 / dck
Magnesium	25	mg/L		1		E200.8	06/23/11 19:28 / dck
Mercury	ND	mg/L		0.001		E200.8	06/23/11 19:28 / dck
Selenium	0.055	mg/L		0.005		E200.8	06/23/11 19:28 / dck
Silver	ND	mg/L		0.005		E200.8	06/23/11 19:28 / dck

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

 $\ensuremath{\mathsf{D}}$ - $\ensuremath{\mathsf{RL}}$ increased due to sample matrix.

MCL - Maximum contaminant level.
ND - Not detected at the reporting limit.

Prepared by Helena, MT Branch

Client:Tetra Tech IncReport Date:07/06/11Project:Beal MtnWork Order:H11060340

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: A2320 B									Batch	n: R71942
Sample ID: MBLK	Me	thod Blank				Run: MAN-	ΓΕCH_110617D		06/17	/11 16:38
Alkalinity, Total as CaCO3		1	mg/L	0.6						
Sample ID: LCS-06022011	Lab	ooratory Con	trol Sample			Run: MAN-	ΓΕCH_110617D		06/17	/11 16:46
Alkalinity, Total as CaCO3		610	mg/L	4.0	101	90	110			
Sample ID: H11060332-007AMS	Saı	mple Matrix S	Spike			Run: MAN-	ΓΕCH_110617D		06/17	/11 23:04
Alkalinity, Total as CaCO3		1100	mg/L	4.0	78	90	110			S
Sample ID: H11060312-001ADUF	P Sai	mple Duplica	ite			Run: MAN-	ΓΕCH_110617D		06/17	/11 23:18
Alkalinity, Total as CaCO3		250	mg/L	4.0				0.1	20	

Qualifiers:

RL - Analyte reporting limit.

S - Spike recovery outside of advisory limits.

Prepared by Helena, MT Branch

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: A2510 B								Analytical	Run: COND	_110617A
Sample ID: ICV1_110617A	Initi	al Calibrati	on Verification	Standard					06/17	/11 10:00
Conductivity		1000	umhos/cm	1.0	100	90	110			
Sample ID: CCV7_110617A	Cor	ntinuing Ca	libration Verific	cation Standard					06/17	/11 15:09
Conductivity		1410	umhos/cm	1.0	100	90	110			
Method: A2510 B							В	atch: 11061	17A-COND-P	ROBE-W
Sample ID: MBLK1_110617A	Met	hod Blank				Run: COND	_110617A		06/17	/11 10:00
Conductivity		2	umhos/cm							
Sample ID: H11060320-001ADUF	San	nple Duplic	ate			Run: COND	_110617A		06/17	/11 10:20
Conductivity		284	umhos/cm	1.0				0.3	10	
Sample ID: H11060320-010ADUF	San	nple Duplic	ate			Run: COND	_110617A		06/17	/11 10:27
Conductivity		1.21	umhos/cm	1.0				0.6	10	

Prepared by Helena, MT Branch

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: A2540 C									Bat	ch: 12623
Sample ID: MB-12623	Met	hod Blank				Run: ACCU	l-124 (14410200)_110620	06/20	/11 15:05
Solids, Total Dissolved TDS @ 180	C	3	mg/L	1.0						
Sample ID: LCS-12623 Solids, Total Dissolved TDS @ 180		oratory Cont 1980	trol Sample mg/L	10	99	Run: ACCU	l-124 (14410200 110)_110620	06/20	/11 15:05
Sample ID: H11060340-001ADUP	San	nple Duplica	ite			Run: ACCU	l-124 (14410200)_110620	06/20	/11 15:06
Solids, Total Dissolved TDS @ 180	С	1070	mg/L	10				1.5	5	
Sample ID: H11060346-001BMS	San	nple Matrix S	Spike			Run: ACCU	l-124 (14410200)_110620	06/20	/11 15:06
Solids, Total Dissolved TDS @ 180	C	2410	mg/L	10	99	80	120			
Sample ID: H11060346-010BDUP	San	nple Duplica	ite			Run: ACCU	l-124 (14410200)_110620	06/20	/11 15:12
Solids, Total Dissolved TDS @ 180	С	724	mg/L	10				0.6	5	

Prepared by Helena, MT Branch

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	A4500-H B							Analyt	ical Run:	MAN-TECH_	_110617D
Sample ID:	CCV1-1905	Co	ntinuing Calib	oration Verific	ation Standard					06/17	/11 16:19
рН			3.92	s.u.	0.10	98	98	102			
Sample ID:	CCV2-2042	Co	ntinuing Calil	oration Verific	ation Standard					06/17	/11 16:25
рН			9.98	s.u.	0.10	100	98	102			
Sample ID:	ICV-1942	Init	ial Calibration	Verification	Standard					06/17	/11 16:28
рН			6.96	s.u.	0.10	99	99	101			
Sample ID:	CCV-1943	Co	ntinuing Calil	oration Verific	ation Standard					06/17	/11 22:33
рН			6.98	s.u.	0.10	100	98	102			
Method:	A4500-H B									Batch	n: R71942
Sample ID:	H11060320-020ADUP	Sa	mple Duplica	te			Run: MAN-	ΓΕCH_110617D		06/17	/11 19:25
рН			5.43	s.u.	0.10				3.3	3	R
Sample ID:	H11060328-007ADUP	' Sa	mple Duplica	te			Run: MAN-	ΓΕCH_110617D		06/17	/11 20:57
рН			8.05	s.u.	0.10				0.1	3	
Sample ID:	H11060332-002ADUP	Sa	mple Duplica	te			Run: MAN-	ΓΕCH_110617D		06/17	/11 22:00
рН			8.25	s.u.	0.10				0.1	3	

Prepared by Helena, MT Branch

Analyte	Count Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: D2036C								Batch:	B_54987
Sample ID: B11062593-001EMSE	Sample Matrix S	Spike Duplicate			Run: SUB-E	3168039		06/28/	/11 12:00
Cyanide, Weak Acid Dissociable	0.117	mg/L	0.0050	114	80	120	4.2	10	
Sample ID: B11062593-001EMS	Sample Matrix S	Spike			Run: SUB-E	3168039		06/28/	/11 11:58
Cyanide, Weak Acid Dissociable	0.112	mg/L	0.0050	109	80	120			
Sample ID: MB-54987	Method Blank				Run: SUB-E	3168039		06/28/	/11 11:51
Cyanide, Weak Acid Dissociable	ND	mg/L	0.002						
Sample ID: LCS-54987	Laboratory Con	trol Sample			Run: SUB-E	3168039		06/28/	/11 11:47
Cyanide, Weak Acid Dissociable	0.107	mg/L	0.0050	107	90	110			

Prepared by Helena, MT Branch

Client:Tetra Tech IncReport Date:07/06/11Project:Beal MtnWork Order:H11060340

Analyte	Count R	esult	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E200.8							Analyti	ical Run:	ICPMS204-B	_110622A
Sample ID: ICV STD	11 Initial C	alibration '	Verificatio	n Standard					06/22	/11 23:20
Arsenic	0	.0495	mg/L	0.0050	99	90	110			
Barium	0	.0504	mg/L	0.10	101	90	110			
Cadmium	0	.0264	mg/L	0.0010	106	90	110			
Calcium		2.53	mg/L	0.50	101	90	110			
Chromium	0	.0489	mg/L	0.010	98	90	110			
Copper	0	.0509	mg/L	0.010	102	90	110			
Lead	0	.0509	mg/L	0.010	102	90	110			
Magnesium		2.52	mg/L	0.50	101	90	110			
Mercury	0.0	00201	mg/L	0.0010	100	90	110			
Selenium	0	.0502	mg/L	0.0050	100	90	110			
Silver	0	.0255	mg/L	0.0050	102	90	110			
Sample ID: ICSA	11 Interfere	ence Che	ck Sample	A					06/22	/11 23:25
Arsenic	0.00	00173	mg/L	0.0050						
Barium	0.00	00255	mg/L	0.10						
Cadmium	0.00	00657	mg/L	0.0010						
Calcium		117	mg/L	0.50	98	70	130			
Chromium	0.0	00234	mg/L	0.010						
Copper	0.00	00457	mg/L	0.010						
Lead	0.00	00130	mg/L	0.010						
Magnesium		43.4	mg/L	0.50	108	70	130			
Mercury	4.90	0E-05	mg/L	0.0010						
Selenium	0.00	00208	mg/L	0.0050						
Silver	0.00	00426	mg/L	0.0050						
Sample ID: ICSAB	11 Interfere	ence Ched	ck Sample	AB					06/22	/11 23:29
Arsenic	0	.0109	mg/L	0.0050	109	70	130			
Barium	0.00	00229	mg/L	0.10		0	0			
Cadmium	0	.0109	mg/L	0.0010	109	70	130			
Calcium		116	mg/L	0.50	97	70	130			
Chromium	0	.0231	mg/L	0.010	116	70	130			
Copper	0	.0210	mg/L	0.010	105	70	130			
Lead	8.00	0E-05	mg/L	0.010		0	0			
Magnesium		43.8	mg/L	0.50	110	70	130			
Mercury		0E-05	mg/L	0.0010		0	0			
Selenium		.0105	mg/L	0.0050	105	70	130			
Silver	0	.0206	mg/L	0.0050	103	70	130			
Sample ID: ICV STD	11 Initial C								06/23	/11 05:52
Arsenic		.0501	mg/L	0.0050	100	90	110			
Barium		.0507	mg/L	0.10	101	90	110			
Cadmium	0	.0262	mg/L	0.0010	105	90	110			
Calcium		2.51	mg/L	0.50	101	90	110			
Chromium		.0487	mg/L	0.010	97	90	110			
Copper	0	.0506	mg/L	0.010	101	90	110			

Qualifiers:

RL - Analyte reporting limit.

Prepared by Helena, MT Branch

Client:Tetra Tech IncReport Date:07/06/11Project:Beal MtnWork Order:H11060340

Count	Result	Units	RL	%NEC	LOW LIMIT	High Limit	RPD RPDLi	IIIIL	Qual
						Analyti	cal Run: ICPMS2	04-B_	_110622 <i>A</i>
11 Initial	Calibration	n Verification	Standard				(06/23	/11 05:52
	0.0502	mg/L	0.010	100	90	110			
	2.52	mg/L	0.50	101	90	110			
(0.00197	mg/L	0.0010	99	90	110			
	0.0511	mg/L	0.0050	102	90	110			
	0.0257	mg/L	0.0050	103	90	110			
11 Interf	erence Ch	eck Sample A	4				(06/23/	/11 05:57
0.	.000174	mg/L	0.0050						
0.	.000290	mg/L	0.10						
0.	.000565	mg/L	0.0010						
	117	mg/L	0.50	98	70	130			
(0.00218	mg/L	0.010						
0.	.000462	_	0.010						
0.	.000105	_	0.010						
	41.9	_	0.50	105	70	130			
5	.40E-05	_							
0.	.000208	_							
		mg/L	0.0050						
11 Interf	erence Ch	eck Sample A	AΒ				(06/23/	/11 06:01
		-	0.0050	107	70	130			
0.		-	0.10		0	0			
	0.0109	_	0.0010	109	70	130			
	116	_	0.50	97	70	130			
	0.0224	_	0.010			130			
	0.0206	_	0.010	103		130			
6	.90E-05	_							
		_		105					
2		_							
	0.0106	_		106		130			
	0.0204	mg/L	0.0050	102	70	130			
11 Initial	Calibration	n Verification	Standard				(06/23/	/11 15:57
	0.0496	mg/L	0.0050	99	90	110			
					90	110			
	0.0508					110			
						110			
(
	0.0258	mg/L	0.0050	103	90	110			
	11 Interf	0.0502 2.52 0.00197 0.0511 0.0257 11 Interference Ch 0.000174 0.000290 0.000565 117 0.00218 0.000462 0.000105 41.9 5.40E-05 0.000208 0.000352 11 Interference Ch 0.0107 0.000236 0.0109 116 0.0224 0.0206 6.90E-05 42.1 2.70E-05 0.0106 0.0204 11 Initial Calibration 0.0496 0.0267 2.49 0.0496 0.0267 2.49 0.0489 0.0508 0.0508 2.55 0.00205 0.0495	0.0502 mg/L 2.52 mg/L 0.00197 mg/L 0.0511 mg/L 0.0257 mg/L 11 Interference Check Sample A 0.000174 mg/L 0.000290 mg/L 0.000565 mg/L 117 mg/L 0.00218 mg/L 0.000462 mg/L 0.000105 mg/L 41.9 mg/L 0.000208 mg/L 0.000208 mg/L 0.000352 mg/L 116 mg/L 0.0107 mg/L 0.000236 mg/L 0.0109 mg/L 116 mg/L 0.0224 mg/L 0.0224 mg/L 0.0224 mg/L 0.0224 mg/L 0.0224 mg/L 0.0206 mg/L 42.1 mg/L 2.70E-05 mg/L 0.0106 mg/L 0.0106 mg/L 0.0204 mg/L 0.0204 mg/L 0.0496 mg/L 0.0496 mg/L 0.0496 mg/L 0.0496 mg/L 0.0489 mg/L 0.0508 mg/L 0.0508 mg/L 0.0508 mg/L 0.0508 mg/L 0.0508 mg/L 0.00205 mg/L 0.00205 mg/L 0.00205 mg/L 0.00205 mg/L 0.00205 mg/L	2.52 mg/L 0.50 0.00197 mg/L 0.0010 0.0511 mg/L 0.0050 0.0257 mg/L 0.0050 11 Interference Check Sample A 0.000174 mg/L 0.0050 0.000290 mg/L 0.10 0.000565 mg/L 0.0010 117 mg/L 0.50 0.00218 mg/L 0.010 0.000462 mg/L 0.010 0.000105 mg/L 0.010 0.000105 mg/L 0.010 41.9 mg/L 0.50 5.40E-05 mg/L 0.0050 0.000238 mg/L 0.0050 11 Interference Check Sample AB 0.0107 mg/L 0.0050 0.000236 mg/L 0.0050 11 Interference Check Sample AB 0.0107 mg/L 0.0050 0.000236 mg/L 0.0010 41.9 mg/L 0.50 0.000236 mg/L 0.0010 0.000236 mg/L 0.0010 116 mg/L 0.50 0.00224 mg/L 0.0010 0.0224 mg/L 0.010 0.0206 mg/L 0.010 0.0206 mg/L 0.010 0.0206 mg/L 0.010 0.0206 mg/L 0.0050 11 Initial Calibration Verification Standard 0.0496 mg/L 0.0050 0.0496 mg/L 0.0050 11 Initial Calibration Verification Standard 0.0496 mg/L 0.0050 0.0489 mg/L 0.0010 0.0508 mg/L 0.010 0.0508 mg/L 0.010 0.0508 mg/L 0.010 0.0508 mg/L 0.0010 0.0508 mg/L 0.010 0.0508 mg/L 0.0010	0.0502 mg/L 0.010 100 2.52 mg/L 0.50 101 0.00197 mg/L 0.0010 99 0.0511 mg/L 0.0050 102 0.0257 mg/L 0.0050 103 11 Interference Check Sample A 0.000174 mg/L 0.0050 0.000290 mg/L 0.010 0.000565 mg/L 0.0010 117 mg/L 0.50 98 0.00218 mg/L 0.010 0.000462 mg/L 0.010 0.000155 mg/L 0.010 0.000155 mg/L 0.010 0.000105 mg/L 0.010 0.000105 mg/L 0.0050 105 5.40E-05 mg/L 0.0050 0.000352 mg/L 0.0050 11 Interference Check Sample AB 0.0107 mg/L 0.0050 0.000236 mg/L 0.0050 116 mg/L 0.50 97 0.00224 mg/L 0.010 116 mg/L 0.50 97 0.0224 mg/L 0.010 112 0.0206 mg/L 0.010 113 6.90E-05 mg/L 0.010 103 6.90E-05 mg/L 0.0010 1042.1 mg/L 0.50 105 2.70E-05 mg/L 0.0010 0.0106 mg/L 0.0050 102 11 Initial Calibration Verification Standard 0.0496 mg/L 0.0050 99 0.0496 mg/L 0.010 99 0.0496 mg/L 0.010 99 0.0496 mg/L 0.050 99 0.0498 mg/L 0.010 98 0.0508 mg/L 0.010 98 0.0508 mg/L 0.010 99 0.0498 mg/L 0.010 98 0.0508 mg/L 0.010 98 0.0508 mg/L 0.010 102 2.55 mg/L 0.0010 103 0.00205 mg/L 0.0010 103 0.00205 mg/L 0.0010 103	0.0502 mg/L 0.010 100 90 2.52 mg/L 0.50 101 90 0.00197 mg/L 0.0010 99 90 0.0511 mg/L 0.0050 102 90 0.0257 mg/L 0.0050 103 90 11 Interference Check Sample A 0.000174 mg/L 0.0050 0.000290 mg/L 0.10 0.000565 mg/L 0.0010 117 mg/L 0.50 98 70 0.00218 mg/L 0.010 0.000462 mg/L 0.010 0.000105 mg/L 0.010 0.000055 mg/L 0.010 0.000105 mg/L 0.010 0.000035 mg/L 0.010 0.000035 mg/L 0.0010 117 mg/L 0.50 105 70 5.40E-05 mg/L 0.0010 0.00028 mg/L 0.0050 11 Interference Check Sample AB 0.0107 mg/L 0.0050 11 Interference Check Sample AB 0.0107 mg/L 0.0050 11 linterference Check Sample AB 0.0109 mg/L 0.0010 109 70 0.000236 mg/L 0.010 109 70 116 mg/L 0.50 97 70 0.00244 mg/L 0.010 112 70 0.0206 mg/L 0.010 103 70 6.99E-05 mg/L 0.010 103 70 6.99E-05 mg/L 0.010 0 0 42.1 mg/L 0.50 105 70 2.70E-05 mg/L 0.0010 0 0 0.0106 mg/L 0.0050 106 70 0.0204 mg/L 0.0050 106 70 0.0204 mg/L 0.0050 107 70 11 Initial Calibration Verification Standard 0.0496 mg/L 0.000 107 90 0.0496 mg/L 0.0010 107 90 0.0496 mg/L 0.0010 107 90 0.0498 mg/L 0.010 102 90 0.0508 mg/L 0.0010 102 90 0.00205 mg/L 0.0010 103 90	11 Initial Calibration Verification Standard	11 Initial Calibration Verification Standard 0.0502 mg/L 0.010 100 90 110 2.52 mg/L 0.50 101 90 110 0.00197 mg/L 0.0010 99 90 110 0.0511 mg/L 0.0050 102 90 110 0.0257 mg/L 0.0050 103 90 110 11 Interference Check Sample A 0.000174 mg/L 0.0050 0.000298 mg/L 0.010 0.000288 mg/L 0.010 0.000105 mg/L 0.010 0.000105 mg/L 0.010 0.000105 mg/L 0.010 0.000288 mg/L 0.0010 11 Interference Check Sample AB 0.0107 mg/L 0.0050 11 Interference Check Sample AB 0.0108 mg/L 0.0010 109 70 130 0.00236 mg/L 0.0010 0.00236 mg/L 0.0010 109 70 130 116 mg/L 0.50 97 70 130 0.0224 mg/L 0.010 112 70 130 0.0226 mg/L 0.010 112 70 130 0.0226 mg/L 0.010 103 70 130 6.90E-05 mg/L 0.010 103 70 130 2.70E-05 mg/L 0.010 0 0 0 42.1 mg/L 0.50 105 70 130 2.70E-05 mg/L 0.0010 0 0 0 0.0106 mg/L 0.0050 106 70 130 2.70E-05 mg/L 0.0010 0 0 0 0.0106 mg/L 0.0050 102 70 130 11 Initial Calibration Verification Standard 0.0496 mg/L 0.050 99 90 110 0.0496 mg/L 0.050 99 90 110 0.0496 mg/L 0.050 99 90 110 0.0498 mg/L 0.010 102 90 110 0.0508 mg/L 0.010 102 90 110 0.0508 mg/L 0.010 102 90 110 0.0508 mg/L 0.010 102 90 110 0.0495 mg/L 0.0050 99 90 110	0.0502 mg/L 0.010 100 90 110 2.552 mg/L 0.50 101 90 110 0.00197 mg/L 0.0010 99 90 110 0.0511 mg/L 0.0050 102 90 110 0.0257 mg/L 0.0050 103 90 110 11 Interference Check Sample A 0.000174 mg/L 0.0050 0.000290 mg/L 0.10 0.000565 mg/L 0.0010 117 mg/L 0.50 98 70 130 0.00188 mg/L 0.010 0.000185 mg/L 0.050 0.000392 mg/L 0.050 0.000392 mg/L 0.050 0.000382 mg/L 0.050 0.000382 mg/L 0.0050 0.000382 mg/L 0.0050 111 Interference Check Sample AB 0.0107 mg/L 0.050 0.000386 mg/L 0.010 0.000208 mg/L 0.0050 111 Interference Check Sample AB 0.0107 mg/L 0.050 0.000386 mg/L 0.10 0 0 0 0.0199 mg/L 0.0010 112 70 130 0.00244 mg/L 0.010 112 70 130 0.0224 mg/L 0.010 103 70 130 0.0224 mg/L 0.010 103 70 130 0.0226 mg/L 0.010 0 0 0 0.0266 mg/L 0.010 103 70 130 0.0204 mg/L 0.050 106 70 130 0.0204 mg/L 0.050 106 70 130 11 Initial Calibration Verification Standard 0.0496 mg/L 0.0050 99 90 110 0.0496 mg/L 0.0050 99 90 110 0.0498 mg/L 0.010 102 90 110 0.0508 mg/L 0.010 102 90 110 0.0495 mg/L 0.0050 103 90 110

Qualifiers:

RL - Analyte reporting limit.

Prepared by Helena, MT Branch

Client:Tetra Tech IncReport Date:07/06/11Project:Beal MtnWork Order:H11060340

Analyte	Count Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E200.8						Analyti	cal Run:	ICPMS204-B	_110622A
Sample ID: ICSA	11 Interference C	heck Sample A	Ą					06/23	/11 16:01
Arsenic	0.000187	mg/L	0.0050						
Barium	0.000165	mg/L	0.10						
Cadmium	0.000479	mg/L	0.0010						
Calcium	109	mg/L	0.50	91	70	130			
Chromium	0.00204	mg/L	0.010						
Copper	0.000381	mg/L	0.010						
Lead	9.20E-05	mg/L	0.010						
Magnesium	40.4	mg/L	0.50	101	70	130			
Mercury	5.70E-05	mg/L	0.0010						
Selenium	0.000230	mg/L	0.0050						
Silver	0.000173	mg/L	0.0050						
Sample ID: ICSAB	11 Interference C	heck Sample A	AΒ					06/23	/11 16:06
Arsenic	0.0102	mg/L	0.0050	102	70	130			
Barium	0.000155	mg/L	0.10		0	0			
Cadmium	0.0102	mg/L	0.0010	102	70	130			
Calcium	109	mg/L	0.50	91	70	130			
Chromium	0.0216	mg/L	0.010	108	70	130			
Copper	0.0198	mg/L	0.010	99	70	130			
Lead	6.90E-05	mg/L	0.010		0	0			
Magnesium	41.2	mg/L	0.50	103	70	130			
Mercury	1.80E-05	mg/L	0.0010		0	0			
Selenium	0.00970	mg/L	0.0050	97	70	130			
Silver	0.0191	mg/L	0.0050	96	70	130			
Sample ID: ICV STD	11 Initial Calibrati	on Verification	Standard					06/24	/11 06:10
Arsenic	0.0495	mg/L	0.0050	99	90	110			
Barium	0.0492	mg/L	0.10	98	90	110			
Cadmium	0.0262	mg/L	0.0010	105	90	110			
Calcium	2.51	mg/L	0.50	100	90	110			
Chromium	0.0488	mg/L	0.010	98	90	110			
Copper	0.0510	mg/L	0.010	102	90	110			
Lead	0.0504	mg/L	0.010	101	90	110			
Magnesium	2.56	mg/L	0.50	102	90	110			
Mercury	0.00204	mg/L	0.0010	102	90	110			
Selenium	0.0499	mg/L	0.0050	100	90	110			
Silver	0.0254	mg/L	0.0050	102	90	110			
Sample ID: ICSA	11 Interference C	•						06/24	/11 06:14
Arsenic	0.000157	mg/L	0.0050						
Barium	0.000191	mg/L	0.10						
Cadmium	0.000434	mg/L	0.0010						
Calcium	112	mg/L	0.50	93	70	130			
Chromium	0.00209	mg/L	0.010						
Copper	0.000443	mg/L	0.010						

Qualifiers:

RL - Analyte reporting limit.

Prepared by Helena, MT Branch

Client:Tetra Tech IncReport Date:07/06/11Project:Beal MtnWork Order:H11060340

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E200.8							Analyti	cal Run:	ICPMS204-B	_110622
Sample ID: ICSA	11 Interf	erence Ch	eck Sample A						06/24	/11 06:14
Lead	9	.40E-05	mg/L	0.010						
Magnesium		41.0	mg/L	0.50	102	70	130			
Mercury	3	.90E-05	mg/L	0.0010						
Selenium	0	.000249	mg/L	0.0050						
Silver	0	.000254	mg/L	0.0050						
Sample ID: ICSAB	11 Interf	erence Ch	eck Sample Al	3					06/24	/11 06:19
Arsenic		0.0104	mg/L	0.0050	104	70	130			
Barium	0	.000165	mg/L	0.10		0	0			
Cadmium		0.0103	mg/L	0.0010	103	70	130			
Calcium		109	mg/L	0.50	91	70	130			
Chromium		0.0216	mg/L	0.010	108	70	130			
Copper		0.0201	mg/L	0.010	100	70	130			
Lead	6	.40E-05	mg/L	0.010		0	0			
Magnesium		41.1	mg/L	0.50	103	70	130			
Mercury	2	.60E-05	mg/L	0.0010		0	0			
Selenium		0.00967	mg/L	0.0050	97	70	130			
Silver		0.0197	mg/L	0.0050	99	70	130			
Sample ID: ICV STD	11 Initial	Calibration	n Verification S	standard					06/24	/11 12:34
Arsenic		0.0494	mg/L	0.0050	99	90	110			
Barium		0.0491	mg/L	0.10	98	90	110			
Cadmium		0.0256	mg/L	0.0010	103	90	110			
Calcium		2.52	mg/L	0.50	101	90	110			
Chromium		0.0488	mg/L	0.010	98	90	110			
Copper		0.0513	mg/L	0.010	103	90	110			
Lead		0.0499	mg/L	0.010	100	90	110			
Magnesium		2.52	mg/L	0.50	101	90	110			
Mercury		0.00200	mg/L	0.0010	100	90	110			
Selenium		0.0502	mg/L	0.0050	100	90	110			
Silver		0.0254	mg/L	0.0050	102	90	110			
Sample ID: ICSA	11 Interf	erence Ch	eck Sample A						06/24	/11 12:41
Arsenic	0	.000183	mg/L	0.0050						
Barium	0	.000102	mg/L	0.10						
Cadmium	0	.000395	mg/L	0.0010						
Calcium		111	mg/L	0.50	93	70	130			
Chromium		0.00203	mg/L	0.010						
Copper	0	.000413	mg/L	0.010						
Lead	8	.20E-05	mg/L	0.010						
Magnesium		40.1	mg/L	0.50	100	70	130			
Mercury	4	.60E-05	mg/L	0.0010						
Selenium	0	.000180	mg/L	0.0050						
Silver	0	.000162	mg/L	0.0050						

Qualifiers:

RL - Analyte reporting limit.

Prepared by Helena, MT Branch

Client:Tetra Tech IncReport Date:07/06/11Project:Beal MtnWork Order:H11060340

Analyte	Count Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E200.8						Analyt	cal Run:	ICPMS204-B	_110622 <i>A</i>
Sample ID: ICSAB	11 Interference C	neck Sample A	ΛB					06/24	/11 12:46
Arsenic	0.0103	mg/L	0.0050	103	70	130			
Barium	0.000116	mg/L	0.10		0	0			
Cadmium	0.00996	mg/L	0.0010	100	70	130			
Calcium	109	mg/L	0.50	91	70	130			
Chromium	0.0213	mg/L	0.010	107	70	130			
Copper	0.0198	mg/L	0.010	99	70	130			
Lead	6.30E-05	mg/L	0.010		0	0			
Magnesium	40.7	mg/L	0.50	102	70	130			
Mercury	2.60E-05	mg/L	0.0010		0	0			
Selenium	0.00986	mg/L	0.0050	99	70	130			
Silver	0.0192	mg/L	0.0050	96	70	130			
Sample ID: ICV STD	11 Initial Calibration	on Verification	Standard					06/25	/11 01:24
Arsenic	0.0491	mg/L	0.0050	98	90	110			
Barium	0.0494	mg/L	0.10	99	90	110			
Cadmium	0.0259	mg/L	0.0010	104	90	110			
Calcium	2.48	mg/L	0.50	99	90	110			
Chromium	0.0486	mg/L	0.010	97	90	110			
Copper	0.0506	mg/L	0.010	101	90	110			
Lead	0.0505	mg/L	0.010	101	90	110			
Magnesium	2.48	mg/L	0.50	99	90	110			
Mercury	0.00198	mg/L	0.0010	99	90	110			
Selenium	0.0511	mg/L	0.0050	102	90	110			
Silver	0.0251	mg/L	0.0050	101	90	110			
Sample ID: ICSA	11 Interference C	neck Sample A	١					06/25	/11 01:29
Arsenic	0.000146	mg/L	0.0050						
Barium	9.10E-05	mg/L	0.10						
Cadmium	0.000352	mg/L	0.0010						
Calcium	111	mg/L	0.50	92	70	130			
Chromium	0.00205	mg/L	0.010						
Copper	0.000429	mg/L	0.010						
Lead	8.40E-05	mg/L	0.010						
Magnesium	40.6	mg/L	0.50	101	70	130			
Mercury	4.80E-05	mg/L	0.0010						
Selenium	0.000197	mg/L	0.0050						
Silver	0.000201	mg/L	0.0050						
Sample ID: ICSAB	11 Interference C	neck Sample A	ΛB					06/25	/11 01:34
Arsenic	0.0102	mg/L	0.0050	102	70	130			
Barium	9.00E-05	mg/L	0.10		0	0			
Cadmium	0.0100	mg/L	0.0010	100	70	130			
Calcium	111	mg/L	0.50	92	70	130			
Chromium	0.0217	mg/L	0.010	108	70	130			
Copper	0.0199	mg/L	0.010	100	70	130			

Qualifiers:

RL - Analyte reporting limit.

Prepared by Helena, MT Branch

Client:Tetra Tech IncReport Date:07/06/11Project:Beal MtnWork Order:H11060340

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E200.8							Analytica	al Run:	ICPMS204-B	_110622A
Sample ID: I	ICSAB	11 Inte	erference Ch	neck Sample AB						06/25	/11 01:34
Lead			6.50E-05	mg/L	0.010		0	0			
Magnesium			40.4	mg/L	0.50	101	70	130			
Mercury			2.10E-05	mg/L	0.0010		0	0			
Selenium			0.00969	mg/L	0.0050	97	70	130			
Silver			0.0194	mg/L	0.0050	97	70	130			
Method:	E200.8									Batcl	h: R72108
Sample ID: I	ICB	11 Me	thod Blank				Run: ICPMS	S204-B_110622A		06/23	/11 06:28
Arsenic			ND	mg/L	3E-05						
Barium			ND	mg/L	3E-05						
Cadmium			ND	mg/L	1E-05						
Calcium			ND	mg/L	0.003						
Chromium			ND	mg/L	6E-05						
Copper			ND	mg/L	3E-05						
Lead			ND	mg/L	1.0E-05						
Magnesium			0.001	mg/L	0.0007						
Mercury			ND	mg/L	9E-06						
Selenium			ND	mg/L	4E-05						
Silver			9E-05	mg/L	3E-05						
Sample ID:	LFB	11 Lat	oratory Fort	ified Blank			Run: ICPMS	S204-B_110622A		06/23	/11 06:33
Arsenic			0.0484	mg/L	0.0050	97	85	115			
Barium			0.0495	mg/L	0.10	99	85	115			
Cadmium			0.0480	mg/L	0.0010	96	85	115			
Calcium			44.6	mg/L	0.50	89	85	115			
Chromium			0.0484	mg/L	0.010	97	85	115			
Copper			0.0498	mg/L	0.010	100	85	115			
Lead			0.0497	mg/L	0.010	99	85	115			
Magnesium			46.7	mg/L	0.50	93	85	115			
Mercury			0.00104	mg/L	0.0010	104	85	115			
Selenium			0.0484	mg/L	0.0050	97	85	115			
Silver			0.0187	mg/L	0.0050	93	85	115			
Sample ID: I	H11060332-007BMS	11 Sa	mple Matrix	Spike			Run: ICPMS	S204-B_110622A		06/23	/11 18:43
Arsenic			0.0507	mg/L	0.0050	96	70	130			
Barium			0.137	mg/L	0.10	89	70	130			
Cadmium			0.0447	mg/L	0.0010	89	70	130			
Calcium			173	mg/L	1.0	65	70	130			S
Chromium			0.0481	mg/L	0.010	96	70	130			
Copper			0.0499	mg/L	0.010	98	70	130			
Lead			0.0488	mg/L	0.010	97	70	130			
Magnesium			276	mg/L	1.0		70	130			Α
Mercury			0.00105	mg/L	0.0010	105	70	130			
Selenium			0.0492	mg/L	0.0050	96	70	130			
Silver			0.0180	mg/L	0.0050	90	70	130			

Qualifiers:

RL - Analyte reporting limit.

A - The analyte level was greater than four times the spike level. In accordance with the method % recovery is not calculated.

S - Spike recovery outside of advisory limits.

Prepared by Helena, MT Branch

Client:Tetra Tech IncReport Date:07/06/11Project:Beal MtnWork Order:H11060340

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E200.8									Batch	n: R72108
Sample ID:	H11060332-007BMS	11 Sar	mple Matrix	Spike			Run: ICPMS	S204-B_110622A		06/23	/11 18:43
Sample ID:	H11060332-007BMSD	11 Sar	nple Matrix	Spike Duplicate			Run: ICPMS	S204-B_110622A		06/23	/11 18:47
Arsenic			0.0503	mg/L	0.0050	96	70	130	8.0	20	
Barium			0.137	mg/L	0.10	88	70	130	0.4	20	
Cadmium			0.0444	mg/L	0.0010	89	70	130	0.5	20	
Calcium			174	mg/L	1.0	65	70	130	0.1	20	S
Chromium			0.0473	mg/L	0.010	94	70	130	1.7	20	
Copper			0.0498	mg/L	0.010	97	70	130	0.2	20	
Lead			0.0492	mg/L	0.010	98	70	130	0.8	20	
Magnesium			274	mg/L	1.0		70	130	0.6	20	Α
Mercury			0.00108	mg/L	0.0010	108	70	130	3.1	20	
Selenium			0.0475	mg/L	0.0050	93	70	130	3.5	20	
Silver			0.0176	mg/L	0.0050	88	70	130	2.1	20	

Qualifiers:

RL - Analyte reporting limit.

A - The analyte level was greater than four times the spike level. In accordance with the method % recovery is not calculated.

S - Spike recovery outside of advisory limits.

Prepared by Helena, MT Branch

Client:Tetra Tech IncReport Date:07/06/11Project:Beal MtnWork Order:H11060340

Analysis		0	Decid	Unito	D.	0/850	Lauriteett			DDDI imit	
Analyte		Count	Result	Units	HL	%REC	Low Limit	High Limit		RPDLimit	Qual
Method:	E200.8			V 101 -11 -01				Analytica	al Run:	ICPMS204-B	
Sample ID: Calcium	ICA 21D	Initi	al Calibration 2.54	n Verification Star mg/L	ndard 0.50	102	90	110		06/28	/11 11:13
Calcium			2.54	mg/L	0.50	102	90	110			
Sample ID:	ICSA	Inte		eck Sample A						06/28	/11 11:17
Calcium			116	mg/L	0.50	97	70	130			
Sample ID:	ICSAB	Inte	erference Ch	eck Sample AB						06/28	/11 11:22
Calcium			113	mg/L	0.50	94	70	130			
Sample ID:	ICV STD	Initi	ial Calibration	n Verification Star	ndard					06/29	/11 00:24
Calcium			2.55	mg/L	0.50	102	90	110			
Sample ID:	ICSA	Inte	erference Ch	eck Sample A						06/29	/11 00:28
Calcium			113	mg/L	0.50	94	70	130		00/20/	711 00.20
Sample ID:	ICCAR	losto	ufauauaa Ob							00/00	/11 00:00
Calcium	ICSAB	Inte	rrerence Cn 110	eck Sample AB mg/L	0.50	91	70	130		06/29/	/11 00:33
					0.00	01	70	100			
Sample ID:	ICSA	Inte		eck Sample A	0.50	0.4	70	100		06/29	/11 11:39
Calcium			113	mg/L	0.50	94	70	130			
Sample ID:	ICSAB	Inte		eck Sample AB						06/29	/11 11:44
Calcium			108	mg/L	0.50	90	70	130			
Sample ID:	ICV STD	Initi	al Calibration	n Verification Star	ndard					06/29	/11 20:39
Calcium			2.54	mg/L	0.50	102	90	110			
Sample ID:	ICSA	Inte	erference Ch	eck Sample A						06/29	/11 20:44
Calcium			110	mg/L	0.50	92	70	130			
Sample ID:	ICSAB	Inte	erference Ch	eck Sample AB						06/29	/11 20:48
Calcium			110	mg/L	0.50	92	70	130			
Method:	E200.8									Batch	n: R72226
Sample ID:		Me	thod Blank				Run: ICPMS	S204-B_110628A			/11 12:07
Calcium			ND	mg/L	0.003					55,-5	
Sample ID:	LFR	l ah	oratory Forti	fied Blank			Run: ICPM	S204-B 110628A		06/28	/11 12:12
Calcium		Lac	45.7	mg/L	0.50	91	85	115		00/20/	/11 12.12
Comple ID:	LED 10600	1 -1-								00/00	/4.4.4.00
Sample ID: Calcium	LFB-12083	Lac	ooratory Forti 24700	mg/kg	1.4	99	Run: ICPMs 85	S204-B_110628A 115		06/28	/11 14:28
						00					
Sample ID:	LFB-12705	Lab	oratory Forti		4.4	00		S204-B_110628A		06/28	/11 20:10
Calcium			23900	mg/kg	1.4	96	85	115			
=	H11060452-011CMS	Sar	mple Matrix S	-				S204-B_110628A		06/29	/11 17:19
Calcium			82.8	mg/L	1.0	79	70	130			
Sample ID:	H11060452-011CMSI) Sar	mple Matrix S	Spike Duplicate			Run: ICPMS	S204-B_110628A		06/29	/11 17:26
Calcium			81.1	mg/L	1.0	75	70	130	2.0	20	

Qualifiers:

RL - Analyte reporting limit.

Prepared by Helena, MT Branch

Client:Tetra Tech IncReport Date:07/06/11Project:Beal MtnWork Order:H11060340

Analyte Count Result Units RL %REC Low Limit High Limit RPD RPDLimit Qual

Method: E200.8 Batch: R72226

 Sample ID:
 H11060452-011CMSD
 Sample Matrix Spike Duplicate
 Run: ICPMS204-B_110628A
 06/29/11 17:26

Prepared by Helena, MT Branch

Client:Tetra Tech IncReport Date:07/06/11Project:Beal MtnWork Order:H11060340

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E300.0								Analytical F	un: IC102-H	_110630A
Sample ID:	ICV062911-12	Initi	ial Calibration	n Verification S	Standard					06/30	/11 13:35
Sulfate			380	mg/L	1.0	96	90	110			
Sample ID:	CCV062911-15	Cor	ntinuing Calil	bration Verifica	ation Standard					06/30	/11 14:10
Sulfate			380	mg/L	1.0	95	90	110			
Method:	E300.0									Batch	n: R72324
Sample ID:	ICB062911-13	Met	thod Blank				Run: IC102	-H_110630A		06/30	/11 13:46
Sulfate			ND	mg/L	0.02						
Sample ID:	LFB062911-14	Lab	oratory Forti	fied Blank			Run: IC102	-H_110630A		06/30	/11 13:58
Sulfate			180	mg/L	1.1	92	90	110			
Sample ID:	H11060448-002AMS	Sar	mple Matrix S	Spike			Run: IC102-	H_110630A		06/30	/11 16:17
Sulfate			430	mg/L	2.0	82	90	110			S
Sample ID:	H11060448-002AMSI) Sar	mple Matrix S	Spike Duplicate	e		Run: IC102	H_110630A		06/30	/11 16:29
Sulfate			430	mg/L	2.0	81	90	110	0.5	20	S

Qualifiers:

Prepared by Helena, MT Branch

Analyte	Count I	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E350.1							Analy	tical Run	: FIA203-HE_	_110622A
Sample ID: ICV	Initial (Calibration	Verification Sta	ındard					06/22	/11 11:31
Nitrogen, Ammonia as N		1.02	mg/L	0.10	102	90	110			
Sample ID: ICB	Initial (Calibration	Blank, Instrume	ent Blank					06/22	/11 11:36
Nitrogen, Ammonia as N	-	0.0414	mg/L	0.10		0	0			
Method: E350.1									Batch	n: R72064
Sample ID: LCS	Labora	atory Cont	rol Sample			Run: FIA203	3-HE_110622A		06/22	/11 11:32
Nitrogen, Ammonia as N		16.5	mg/L	0.50	105	90	110			
Sample ID: LFB	Labora	atory Fortif	ied Blank			Run: FIA203	B-HE_110622A		06/22	/11 11:33
Nitrogen, Ammonia as N		1.00	mg/L	0.10	101	90	110			
Sample ID: MBLK	Metho	d Blank				Run: FIA203	B-HE_110622A		06/22	/11 11:54
Nitrogen, Ammonia as N		ND	mg/L	0.002						
Sample ID: H11060342-001CMS	Sampl	e Matrix S	pike			Run: FIA203	3-HE_110622A		06/22	/11 12:49
Nitrogen, Ammonia as N		0.990	mg/L	0.10	101	80	120			
Sample ID: H11060342-001CMS	D Sampl	e Matrix S	pike Duplicate			Run: FIA203	3-HE_110622A		06/22	/11 12:50
Nitrogen, Ammonia as N		0.969	mg/L	0.10	99	80	120	2.1	10	

Prepared by Helena, MT Branch

Client:Tetra Tech IncReport Date:07/06/11Project:Beal MtnWork Order:H11060340

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E353.2							Analytic	al Run: N	NUTRIENTS_	_110620A
Sample ID: ICV-1	Initial	Calibration	Verification Sta	ındard					06/20/	/11 10:08
Nitrogen, Nitrate+Nitrite as N		1.09	mg/L	0.050	109	90	110			
Sample ID: ICB	Initial	Calibration	Blank, Instrume	ent Blank					06/20/	/11 10:15
Nitrogen, Nitrate+Nitrite as N		1.01	mg/L	0.050		0	0			
Sample ID: CCV-33	Contir	nuing Calik	oration Verification	on Standard					06/20/	/11 11:12
Nitrogen, Nitrate+Nitrite as N		0.520	mg/L	0.050	104	90	110			
Method: E353.2							E	Batch: A2	011-06-20_5	_NO3_01
Sample ID: LCS-2	Labora	atory Cont	rol Sample			Run: NUTR	IENTS_110620A		06/20/	/11 10:10
Nitrogen, Nitrate+Nitrite as N		25.5	mg/L	0.20	105	90	110			
Sample ID: LFB-3	Labora	atory Forti	fied Blank			Run: NUTR	IENTS_110620A		06/20/	/11 10:12
Nitrogen, Nitrate+Nitrite as N		1.04	mg/L	0.050	104	90	110			
Sample ID: MBLK-7	Metho	d Blank				Run: NUTR	IENTS_110620A		06/20/	/11 10:19
Nitrogen, Nitrate+Nitrite as N		ND	mg/L	0.006						
Sample ID: H11060332-006DMS	Samp	le Matrix S	Spike			Run: NUTR	IENTS_110620A		06/20/	/11 11:18
Nitrogen, Nitrate+Nitrite as N		0.990	mg/L	0.050	99	90	110			
Sample ID: H11060332-006DMSI	D Samp	le Matrix S	Spike Duplicate			Run: NUTR	IENTS_110620A		06/20/	/11 11:20
Nitrogen, Nitrate+Nitrite as N		1.00	mg/L	0.050	100	90	110	1.0	20	

RL - Analyte reporting limit.

Prepared by Helena, MT Branch

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: Kelada mod								Analytic	cal Run: SUB	-B168039
Sample ID: ICV-1	Initial	Calibration	n Verification	Standard					06/28	/11 11:35
Cyanide, Total		0.159	mg/L	0.0050	106	90	110			
Method: Kelada mod									Batch	: B_55001
Sample ID: H11060342-019D	Samp	ole Matrix S	Spike Duplica	te		Run: SUB-E	3168039		06/28	/11 14:26
Cyanide, Total		0.101	mg/L	0.0050	101	90	110	4.1	10	
Sample ID: LCS-55001	Labor	ratory Cont	rol Sample			Run: SUB-E	3168039		06/28	/11 11:49
Cyanide, Total		0.0998	mg/L	0.0050	100	90	110			
Sample ID: MB-55001	Metho	od Blank				Run: SUB-E	3168039		06/28	/11 11:53
Cyanide, Total		ND	mg/L	0.002						
Sample ID: H11060342-019D	Samp	ole Matrix S	Spike			Run: SUB-E	3168039		06/28	/11 14:24
Cyanide, Total	•	0.106	mg/L	0.0050	106	90	110			

Workorder Receipt Checklist

Reviewed by:

Tetra Tech Inc H11060340 Login completed by: Tracy L. Lorash Date Received: 6/17/2011

Reviewed Date: 6/21/2011

BL2000\ablackburn

Carrier Hand Del

name:

Received by: TLL

Shipping container/cooler in good condition?	Yes √	No 🗌	Not Present
Custody seals intact on shipping container/cooler?	Yes	No 🗌	Not Present ✓
Custody seals intact on sample bottles?	Yes	No 🗌	Not Present ✓
Chain of custody present?	Yes ✓	No 🗌	
Chain of custody signed when relinquished and received?	Yes √	No 🗌	
Chain of custody agrees with sample labels?	Yes ✓	No 🗌	
Samples in proper container/bottle?	Yes √	No 🗌	
Sample containers intact?	Yes √	No 🗌	
Sufficient sample volume for indicated test?	Yes √	No 🗌	
All samples received within holding time?	Yes √	No 🗌	
Container/Temp Blank temperature:	4.8℃		
Water - VOA vials have zero headspace?	Yes	No 🗌	No VOA vials submitted 🗸
Water - pH acceptable upon receipt?	Yes 🗸	No 🗌	Not Applicable

Contact and Corrective Action Comments:

None

ENERGY	

Chain of Custody and Analytical Request Record

The second secon		PLEASE PRINT (Provi	(Provide as much information as experience) - inicoo	Page / of /
Company Name:		ect Name, PWS,	Etc.	Sample Origin	
Tatra Tech		Beal Mountain	Mine	State:	Er Avstate Compliance:
Report Mail Address:			Phone/Eax	Energy / T. /	ON D
303 Irane Street		yaus		naus a total	Sampler: (Please Print)
M	29601	443-5210			Jim Maus
Invoice Address:		Invoice Contact & Phone:		Purchase Order	Onote/Bottle
Some		Some			7
Special Report/Formats:		_	ANALYSIS REQUESTED	Contact ELI prior to	Shipped by:
] ; ;	! ! !	V B O E O E O E O E O E O E O E O E O E O		<u>مح</u>	Cooler ID(s):
DW POTWWWTP	EDD/EDT(Electronic Data) Format:	of Cont N S W S Eloassa Bioassa Ming W Scoll		Instruction Page Comments:	Receipt Temp
State: Other:	LEVEL IV	Vumber ole Type: Air Wate getation DW - Drii	TTA =) U	On Ice: Or
		1 1 1 20 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			Custody Seal
SAMPLE IDENTIFICATION (Name, Location, Interval, etc.)	Collection Collection Date Time	MATRIX Phy Total	TAN ON THE	I	Intact Y N Signature
588-91-29	6-16-11 1215	۶ × × × ×	8	500 TH 7	Mat
2 SBB-87-02	6-16-11 1635	X X X	X		
BRAW. 1	6-16-11 1350	A X X X		١,	
v ا					
9					
2					4O.
8					<u>/[</u>
6					<u> 40</u> 8
10					747
-	Date/Time: (-17-1) (0)		Received by (print): D	Date/Time:	Signature:
Record Relinquished by (print):	Date/Time:	Signature:	Received by (print): D	Date/Тіте:	Significane:
Sample Disposal:	Return to Client:	Lab Disposal:	Respiratory Laboratory: 03	(0)(0)1//2/	Significan

In certain circumstances, samples submitted to Energy Laboratories, Inc. may be subcontracted to other certified laboratories in order to complete the analysis reguested.

This serves as notice of this possibility. All sub-contract data will be clearly notated on your analytical report.

Visit our web site at www.energylab.com for additional information, downloadable fee schedule, forms, and links.

Leach Pad Area Groundwater 8 samples X 2 events for Table 7

LEACH PAD AREA	TABLI GROUNDWATER	E 7 R ANALYTICAL REQUIR	EMENTS
Parameter	MDL (mg/L) ⁽¹⁾	Method No.	Max. Holding Time
	Physicoch	emical	
Total Dissolved Solids	10	A2540C	7 Days
	Metals	(2)	
Copper	0.001	E200.8	6 Months
Selenium	0.001	E200.8	6 Months
	Inorgan	ics	
Cyanide, free	0.2	SM4500 CN F	14 Days
Cyanide, total	0.005	SM4500 CN / 335.4	14 Days
Cyanide, weak acid dissociable (WAD)	0.005	SM 4500	14 Days
	Nutrien	its	
Ammonia (low level)	0.1	SM4500 NH3	28 Days
Nitrogen, Nitrate+Nitrite as N	0.05	E353.2	28 Days

MDL = Method Detection Limit in milligrams per liter (mg/L). Groundwater to be analyzed for total recoverable metals for comparison to leach pad chemistry. 2

SBB-91-29

Waste Rock Dump Groundwater samples 2 samples X 2 events for Table 9

	<u>.</u>										
WASTE ROCK D	TABLE	9 R ANALYTICAL REQI	IIDEMENTS								
Parameter	MDL (mg/L) ⁽¹⁾ Method No. Max. Holding 1										
Physicochemical											
рН	0.1	A45400	24 hours								
Conductivity	1	A2510B	28 Days								
	Metals	2)									
Arsenic	0.005	E200.8	6 Months								
Barium	0.1	E200.8	6 Months								
Cadmium	0.001	E200.8	6 Months								
Calcium	1	E200.8	6 Months								
Chromium	0.01	E200.8	6 Months								
Lead	0.01	E200.8	6 Months								
Magnesium	1	E200.7	6 Months								
Mercury	0.001	E200.8	6 Months								
Selenium	0.005	E200.8	6 Months								
Silver	0.005	E200.8	6 Months								
Inorganics											
Total Alkalinity, total CaCO3	4	A2320B	14 Days								
Sulfate	1	E300.0	28 Days								
Hardness, CaCO3	1	A2340B	14 Days								

- $\label{eq:mdl} \mbox{MDL = Method Detection Limit in milligrams per liter (mg/L).} \\ \mbox{To be analyzed for total dissolved metals.}$
- 2

WRMW-1 SBB-87-02

ANALYTICAL SUMMARY REPORT

July 07, 2011

Tetra Tech Inc 303 Irene St Helena, MT 59601

Workorder No.: H11060342 Quote ID: H634 - Beal 2011 Site Wide Monitoring

Project Name: Beal Mtn

Energy Laboratories Inc Helena MT received the following 20 samples for Tetra Tech Inc on 6/17/2011 for analysis.

Sample ID	Client Sample ID	Collect Date Receive Date	Matrix	Test
H11060342-001	SPR-Roadfill	06/15/11 8:15 06/17/11	Aqueous	Metals by ICP/ICPMS, Tot. Rec. Cyanide, Free Cyanide, Total Manual Distillation Total Cyanide Digestion Cyanide, Weak Acid Dissociable WAD Cyanide Distillation Nitrogen, Ammonia Nitrogen, Nitrate + Nitrite Metals Digestion by EPA 200.2 Preparation for TSS Solids, Total Suspended
H11060342-002	SPR-3	06/15/11 9:00 06/17/11	Aqueous	Same As Above
H11060342-003	SPR-D4	06/15/11 10:55 06/17/11	Aqueous	Same As Above
H11060342-004	SPR-18	06/15/11 11:30 06/17/11	Aqueous	Same As Above
H11060342-005	SPR-D2	06/15/11 12:15 06/17/11	Aqueous	Same As Above
H11060342-006	SPR-2	06/15/11 13:10 06/17/11	Aqueous	Same As Above
H11060342-007	SPR-19	06/15/11 13:45 06/17/11	Aqueous	Same As Above
H11060342-008	SPR-5	06/15/11 14:45 06/17/11	Aqueous	Metals by ICP/ICPMS, Tot. Rec. Alkalinity Cyanide, Free Cyanide, Total Manual Distillation Total Cyanide Digestion Cyanide, Weak Acid Dissociable WAD Cyanide Distillation Conductivity Anions by Ion Chromatography Nitrogen, Ammonia Nitrogen, Nitrate + Nitrite Metals Digestion by EPA 200.2 Preparation for TSS Solids, Total Suspended
H11060342-009	STA-4	06/15/11 15:00 06/17/11	Aqueous	Metals by ICP/ICPMS, Tot. Rec. Cyanide, Free Cyanide, Total Manual Distillation Total Cyanide Digestion Cyanide, Weak Acid Dissociable WAD Cyanide Distillation Nitrogen, Ammonia Nitrogen, Nitrate + Nitrite Metals Digestion by EPA 200.2 Preparation for TSS Solids, Total Suspended

ANALYTICAL SUMMARY REPORT

H11060342-010	SPR-10A	06/15/11 15:45 06/17/11	Aqueous	Metals by ICP/ICPMS, Tot. Rec.
				Alkalinity Cyanide, Free Cyanide, Total Manual Distillation Total Cyanide Digestion Cyanide, Weak Acid Dissociable WAD Cyanide Distillation Conductivity Anions by Ion Chromatography Nitrogen, Ammonia Nitrogen, Nitrate + Nitrite Metals Digestion by EPA 200.2 Preparation for TSS Solids, Total Suspended
H11060342-011	MB-Drain	06/15/11 16:10 06/17/11	Aqueous	Same As Above
H11060342-012	SPR-T	06/15/11 17:15 06/17/11	Aqueous	Metals by ICP/ICPMS, Tot. Rec. Cyanide, Free Cyanide, Total Manual Distillation Total Cyanide Digestion Cyanide, Weak Acid Dissociable WAD Cyanide Distillation Nitrogen, Ammonia Nitrogen, Nitrate + Nitrite Metals Digestion by EPA 200.2 Preparation for TSS Solids, Total Suspended
H11060342-013	STA-3A	06/15/11 17:40 06/17/11	Aqueous	Same As Above
H11060342-014	MINN-DN	06/16/11 10:25 06/17/11	Aqueous	Same As Above
H11060342-015	STA-2	06/16/11 14:30 06/17/11	Aqueous	Same As Above
H11060342-016	Toe Drain	06/16/11 16:50 06/17/11	Aqueous	Metals by ICP/ICPMS, Tot. Rec. Alkalinity Cyanide, Free Cyanide, Total Manual Distillation Total Cyanide Digestion Cyanide, Weak Acid Dissociable WAD Cyanide Distillation Conductivity Anions by Ion Chromatography Nitrogen, Ammonia Nitrogen, Nitrate + Nitrite Metals Digestion by EPA 200.2 Preparation for TSS Solids, Total Suspended
H11060342-017	BCD-A	06/16/11 18:05 06/17/11	Aqueous	Metals by ICP/ICPMS, Tot. Rec. Cyanide, Free Cyanide, Total Manual Distillation Total Cyanide Digestion Cyanide, Weak Acid Dissociable WAD Cyanide Distillation Nitrogen, Ammonia Nitrogen, Nitrate + Nitrite Metals Digestion by EPA 200.2 Preparation for TSS Solids, Total Suspended
H11060342-018	STA-1	06/16/11 19:00 06/17/11	Aqueous	Same As Above
H11060342-019	BS-D	06/16/11 19:45 06/17/11	Aqueous	Same As Above
H11060342-020	DUP-1	06/16/11 6:00 06/17/11	Aqueous	Same As Above
-				

ANALYTICAL SUMMARY REPORT

This report was prepared by Energy Laboratories, Inc., 3161 E. Lyndale Ave., Helena, MT 59604. Any exceptions or problems with the analyses are noted in the Laboratory Analytical Report, the QA/QC Summary Report, or the Case Narrative.

The results as reported relate only to the item(s) submitted for testing.

If you have any questions regarding these test results, please call.

Report Approved By:

Report Date: 07/07/11

CLIENT: Tetra Tech Inc Project: Beal Mtn

CASE NARRATIVE Sample Delivery Group: H11060342

Tests associated with analyst identified as ELI-B were subcontracted to Energy Laboratories, 1120 S. 27th St., Billings, MT, EPA Number MT00005.

Prepared by Helena, MT Branch

 Client:
 Tetra Tech Inc
 Report Date:
 07/07/11

 Project:
 Beal Mtn
 Collection Date:
 06/15/11 08:15

 Lab ID:
 H11060342-001
 DateReceived:
 06/17/11

 Client Sample ID
 SPR-Roadfill
 Matrix:
 Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL PROPERTIES							
Solids, Total Suspended TSS @ 105 C	8	mg/L		5		A2540 D	06/20/11 11:54 / cmm
INORGANICS							
Cyanide, Total	ND	mg/L		0.005		Kelada mod	06/22/11 14:03 / eli-b1
Cyanide, Free	ND	mg/L		0.20		A4500-CN-F	06/27/11 08:04 / eli-b
Cyanide, Weak Acid Dissociable	NA	mg/L		0.005		D2036C	06/27/11 07:57 / eli-b
- The Total Cyanide was analyzed, and was less	than the repo	rting limit for V	Veak Acid Dissociat	ole (WAD)	Cyanide.	WAD Cyanide was	not analyzed.
NUTRIENTS							
Nitrogen, Nitrate+Nitrite as N	0.43	mg/L		0.05		E353.2	06/20/11 11:26 / reh
Nitrogen, Ammonia as N	ND	mg/L		0.1		E350.1	06/22/11 12:47 / reh
METALS, TOTAL RECOVERABLE							
Copper	0.004	mg/L		0.001		E200.8	06/23/11 19:33 / dck
Selenium	0.018	mg/L		0.001		E200.8	06/23/11 19:33 / dck

Report RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

Prepared by Helena, MT Branch

Client: Tetra Tech Inc
Project: Beal Mtn

Lab ID: H11060342-002

Client Sample ID SPR-3

Report Date: 07/07/11

Collection Date: 06/15/11 09:00

DateReceived: 06/17/11

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL PROPERTIES							
Solids, Total Suspended TSS @ 105 C	ND	mg/L		5		A2540 D	06/20/11 11:54 / cmm
INORGANICS							
Cyanide, Total	0.018	mg/L		0.005		Kelada mod	06/28/11 13:39 / eli-b
Cyanide, Free	ND	mg/L		0.20		A4500-CN-F	06/29/11 17:02 / eli-b
Cyanide, Weak Acid Dissociable	ND	mg/L		0.005		D2036C	06/29/11 15:51 / eli-b
NUTRIENTS							
Nitrogen, Nitrate+Nitrite as N	2.33	mg/L		0.05		E353.2	06/20/11 12:30 / reh
Nitrogen, Ammonia as N	ND	mg/L		0.1		E350.1	06/22/11 12:51 / reh
METALS, TOTAL RECOVERABLE							
Copper	0.002	mg/L		0.001		E200.8	06/23/11 19:38 / dck
Selenium	0.009	mg/L		0.001		E200.8	06/23/11 19:38 / dck

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

Prepared by Helena, MT Branch

Client: Tetra Tech Inc Project: Beal Mtn

Lab ID: H11060342-003

Client Sample ID SPR-D4

Report Date: 07/07/11
Collection Date: 06/15/11 10:55
DateReceived: 06/17/11

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL PROPERTIES							
Solids, Total Suspended TSS @ 105 C	ND	mg/L		5		A2540 D	06/20/11 11:55 / cmm
INORGANICS							
Cyanide, Total	0.023	mg/L		0.005		Kelada mod	06/28/11 13:48 / eli-b
Cyanide, Free	ND	mg/L		0.20		A4500-CN-F	06/29/11 17:02 / eli-b
Cyanide, Weak Acid Dissociable	0.012	mg/L		0.005		D2036C	06/29/11 15:53 / eli-b
NUTRIENTS							
Nitrogen, Nitrate+Nitrite as N	0.05	mg/L		0.05		E353.2	06/20/11 11:29 / reh
Nitrogen, Ammonia as N	ND	mg/L		0.1		E350.1	06/22/11 12:52 / reh
METALS, TOTAL RECOVERABLE							
Copper	0.001	mg/L		0.001		E200.8	06/23/11 19:42 / dck
Selenium	0.001	mg/L		0.001		E200.8	06/23/11 19:42 / dck

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

Prepared by Helena, MT Branch

Client: Tetra Tech Inc Project: Beal Mtn

Lab ID: H11060342-004

Client Sample ID SPR-18

Report Date: 07/07/11

Collection Date: 06/15/11 11:30

DateReceived: 06/17/11

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL PROPERTIES							
Solids, Total Suspended TSS @ 105 C	ND	mg/L		5		A2540 D	06/20/11 11:55 / cmm
INORGANICS							
Cyanide, Total	0.024	mg/L		0.005		Kelada mod	06/28/11 13:49 / eli-b
Cyanide, Free	ND	mg/L		0.20		A4500-CN-F	06/29/11 17:02 / eli-b
Cyanide, Weak Acid Dissociable	ND	mg/L		0.005		D2036C	06/29/11 16:02 / eli-b
NUTRIENTS							
Nitrogen, Nitrate+Nitrite as N	0.59	mg/L		0.05		E353.2	06/20/11 11:32 / reh
Nitrogen, Ammonia as N	ND	mg/L		0.1		E350.1	06/22/11 12:53 / reh
METALS, TOTAL RECOVERABLE							
Copper	0.002	mg/L		0.001		E200.8	06/23/11 19:47 / dck
Selenium	0.002	mg/L		0.001		E200.8	06/23/11 19:47 / dck

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

Prepared by Helena, MT Branch

Client: Tetra Tech Inc
Project: Beal Mtn

Lab ID: H11060342-005 Client Sample ID SPR-D2 **Report Date:** 07/07/11 **Collection Date:** 06/15/11 12:15

DateReceived: 06/17/11

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL PROPERTIES							
Solids, Total Suspended TSS @ 105 C	ND	mg/L		5		A2540 D	06/20/11 11:55 / cmm
INORGANICS							
Cyanide, Total	0.079	mg/L		0.005		Kelada mod	06/28/11 13:51 / eli-b
Cyanide, Free	ND	mg/L		0.20		A4500-CN-F	06/29/11 17:02 / eli-b
Cyanide, Weak Acid Dissociable	0.035	mg/L		0.005		D2036C	06/29/11 16:04 / eli-b
NUTRIENTS							
Nitrogen, Nitrate+Nitrite as N	0.06	mg/L		0.05		E353.2	06/20/11 11:34 / reh
Nitrogen, Ammonia as N	ND	mg/L		0.1		E350.1	06/22/11 12:54 / reh
METALS, TOTAL RECOVERABLE							
Copper	0.002	mg/L		0.001		E200.8	06/23/11 19:51 / dck
Selenium	0.001	mg/L		0.001		E200.8	06/23/11 19:51 / dck

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

Prepared by Helena, MT Branch

Client: Tetra Tech Inc Project: Beal Mtn

Lab ID: H11060342-006

Client Sample ID SPR-2

Report Date: 07/07/11
Collection Date: 06/15/11 13:10
DateReceived: 06/17/11

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL PROPERTIES							
Solids, Total Suspended TSS @ 105 C	ND	mg/L		5		A2540 D	06/20/11 11:56 / cmm
INORGANICS							
Cyanide, Total	ND	mg/L		0.005		Kelada mod	06/28/11 14:13 / eli-b
Cyanide, Free	ND	mg/L		0.20		A4500-CN-F	06/29/11 17:02 / eli-b
Cyanide, Weak Acid Dissociable	ND	mg/L		0.005		D2036C	06/29/11 17:00 / eli-b
NUTRIENTS							
Nitrogen, Nitrate+Nitrite as N	0.59	mg/L		0.05		E353.2	06/20/11 11:40 / reh
Nitrogen, Ammonia as N	ND	mg/L		0.1		E350.1	06/22/11 12:56 / reh
METALS, TOTAL RECOVERABLE							
Copper	0.001	mg/L		0.001		E200.8	06/23/11 19:56 / dck
Selenium	0.007	mg/L		0.001		E200.8	06/23/11 19:56 / dck

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

Prepared by Helena, MT Branch

Client: Tetra Tech Inc Project: Beal Mtn Lab ID:

H11060342-007

Client Sample ID SPR-19

Report Date: 07/07/11 **Collection Date:** 06/15/11 13:45

DateReceived: 06/17/11 Matrix: Aqueous

Analyses	Result	Units	Qualifiers R	MCL/ L QCL	Method	Analysis Date / By
PHYSICAL PROPERTIES						
Solids, Total Suspended TSS @ 105 C	ND	mg/L	5		A2540 D	06/20/11 11:56 / cmm
INORGANICS						
Cyanide, Total	0.117	mg/L	0.0	05	Kelada mod	06/28/11 14:15 / eli-b
Cyanide, Free	ND	mg/L	0.2	0	A4500-CN-F	06/29/11 17:02 / eli-b
Cyanide, Weak Acid Dissociable	0.062	mg/L	0.0	05	D2036C	06/29/11 16:05 / eli-b
NUTRIENTS						
Nitrogen, Nitrate+Nitrite as N	0.92	mg/L	0.0	5	E353.2	06/20/11 11:42 / reh
Nitrogen, Ammonia as N	ND	mg/L	0.	1	E350.1	06/22/11 12:57 / reh
METALS, TOTAL RECOVERABLE						
Copper	0.001	mg/L	0.0	01	E200.8	06/23/11 20:00 / dck
Selenium	0.007	mg/L	0.0	01	E200.8	06/23/11 20:00 / dck

Report RL - Analyte reporting limit. Definitions: QCL - Quality control limit.

Prepared by Helena, MT Branch

Client: Tetra Tech Inc
Project: Beal Mtn

Lab ID: H11060342-008

Client Sample ID SPR-5

Report Date: 07/07/11
Collection Date: 06/15/11 14:45
DateReceived: 06/17/11

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL PROPERTIES							
Solids, Total Suspended TSS @ 105 C	ND	mg/L		5		A2540 D	06/20/11 11:56 / cmm
INORGANICS							
Cyanide, Total	ND	mg/L		0.005		Kelada mod	06/22/11 14:37 / eli-b1
Alkalinity, Total as CaCO3	52	mg/L		4		A2320 B	06/20/11 20:04 / zeg
Sulfate	1200	mg/L	D	5		E300.0	06/20/11 23:55 / zeg
Cyanide, Free	ND	mg/L		0.20		A4500-CN-F	06/27/11 08:04 / eli-b
Cyanide, Weak Acid Dissociable	NA	mg/L		0.005		D2036C	06/27/11 07:57 / eli-b
- The Total Cyanide was analyzed, and was less	than the repo	rting limit for V	Veak Acid Dissocial	ble (WAD)	Cyanide.	WAD Cyanide was	s not analyzed.
NUTRIENTS							
Nitrogen, Nitrate+Nitrite as N	1.40	mg/L		0.05		E353.2	06/20/11 11:44 / reh
Nitrogen, Ammonia as N	ND	mg/L		0.1		E350.1	06/22/11 12:58 / reh
METALS, TOTAL RECOVERABLE							
Copper	0.002	mg/L		0.001		E200.8	06/23/11 20:05 / dck
Selenium	0.074	mg/L		0.001		E200.8	06/23/11 20:05 / dck

Report RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

 $\ensuremath{\mathsf{D}}$ - $\ensuremath{\mathsf{RL}}$ increased due to sample matrix.

Prepared by Helena, MT Branch

Client: Tetra Tech Inc Project: Beal Mtn

Lab ID: H11060342-009

Client Sample ID STA-4

Report Date: 07/07/11 **Collection Date:** 06/15/11 15:00 **DateReceived:** 06/17/11

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL PROPERTIES							
Solids, Total Suspended TSS @ 105 C	ND	mg/L		5		A2540 D	06/20/11 11:56 / cmm
INORGANICS							
Cyanide, Total	ND	mg/L		0.005		Kelada mod	06/22/11 14:40 / eli-b1
Cyanide, Free	ND	mg/L		0.20		A4500-CN-F	06/27/11 08:04 / eli-b
Cyanide, Weak Acid Dissociable	NA	mg/L		0.005		D2036C	06/27/11 07:57 / eli-b
- The Total Cyanide was analyzed, and was less th	an the repo	rting limit for W	eak Acid Dissocial	ble (WAD)	Cyanide.	WAD Cyanide was	not analyzed.
NUTRIENTS							
Nitrogen, Nitrate+Nitrite as N	ND	mg/L		0.05		E353.2	06/20/11 11:45 / reh
Nitrogen, Ammonia as N	ND	mg/L		0.1		E350.1	06/22/11 12:59 / reh
METALS, TOTAL RECOVERABLE							
Copper	0.003	mg/L		0.001		E200.8	06/23/11 20:41 / dck
Selenium	0.001	mg/L		0.001		E200.8	06/23/11 20:41 / dck

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

Prepared by Helena, MT Branch

 Client:
 Tetra Tech Inc
 Report Date:
 07/07/11

 Project:
 Beal Mtn
 Collection Date:
 06/15/11 15:45

 Lab ID:
 H11060342-010
 DateReceived:
 06/17/11

 Client Sample ID
 SPR-10A
 Matrix:
 Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL PROPERTIES							
Solids, Total Suspended TSS @ 105 C	ND	mg/L		5		A2540 D	06/20/11 11:56 / cmm
INORGANICS							
Cyanide, Total	ND	mg/L		0.005		Kelada mod	06/22/11 14:43 / eli-b1
Alkalinity, Total as CaCO3	110	mg/L		4		A2320 B	06/20/11 20:18 / zeg
Sulfate	230	mg/L		1		E300.0	06/21/11 00:11 / zeg
Cyanide, Free	ND	mg/L		0.20		A4500-CN-F	06/27/11 08:04 / eli-b
Cyanide, Weak Acid Dissociable	NA	mg/L		0.005		D2036C	06/27/11 07:57 / eli-b
- The Total Cyanide was analyzed, and was less th	an the repo	rting limit for W	eak Acid Dissociat	ole (WAD)	Cyanide.	WAD Cyanide was	not analyzed.
NUTRIENTS							
Nitrogen, Nitrate+Nitrite as N	0.87	mg/L		0.05		E353.2	06/20/11 11:52 / reh
Nitrogen, Ammonia as N	ND	mg/L		0.1		E350.1	06/22/11 13:00 / reh
METALS, TOTAL RECOVERABLE							
Copper	0.004	mg/L		0.001		E200.8	06/23/11 20:45 / dck
Selenium	0.027	mg/L		0.001		E200.8	06/23/11 20:45 / dck

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

Prepared by Helena, MT Branch

 Client:
 Tetra Tech Inc
 Report Date:
 07/07/11

 Project:
 Beal Mtn
 Collection Date:
 06/15/11 16:10

 Lab ID:
 H11060342-011
 DateReceived:
 06/17/11

 Client Sample ID
 MB-Drain
 Matrix:
 Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL PROPERTIES							
Solids, Total Suspended TSS @ 105 C	ND	mg/L		5		A2540 D	06/20/11 11:57 / cmm
INORGANICS							
Cyanide, Total	ND	mg/L		0.005		Kelada mod	06/22/11 14:46 / eli-b1
Alkalinity, Total as CaCO3	96	mg/L		4		A2320 B	06/20/11 20:34 / zeg
Sulfate	990	mg/L	D	5		E300.0	06/21/11 00:26 / zeg
Cyanide, Free	ND	mg/L		0.20		A4500-CN-F	06/27/11 08:04 / eli-b
Cyanide, Weak Acid Dissociable	NA	mg/L		0.005		D2036C	06/27/11 07:57 / eli-b
- The Total Cyanide was analyzed, and was less th	an the repo	rting limit for	Weak Acid Dissociat	ole (WAD)	Cyanide.	WAD Cyanide was	not analyzed.
NUTRIENTS							
Nitrogen, Nitrate+Nitrite as N	0.45	mg/L		0.05		E353.2	06/20/11 11:54 / reh
Nitrogen, Ammonia as N	ND	mg/L		0.1		E350.1	06/22/11 13:06 / reh
METALS, TOTAL RECOVERABLE							
Copper	0.001	mg/L		0.001		E200.8	06/23/11 20:50 / dck
Selenium	0.030	mg/L		0.001		E200.8	06/23/11 20:50 / dck

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

 $\ensuremath{\mathsf{D}}$ - $\ensuremath{\mathsf{RL}}$ increased due to sample matrix.

Prepared by Helena, MT Branch

Client: Tetra Tech Inc Project: Beal Mtn Lab ID:

H11060342-012

Client Sample ID SPR-T

Report Date: 07/07/11 **Collection Date:** 06/15/11 17:15 DateReceived: 06/17/11

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL PROPERTIES							
Solids, Total Suspended TSS @ 105 C	ND	mg/L		5		A2540 D	06/20/11 12:01 / cmm
INORGANICS							
Cyanide, Total	0.011	mg/L		0.005		Kelada mod	06/28/11 14:17 / eli-b
Cyanide, Free	ND	mg/L		0.20		A4500-CN-F	06/29/11 17:02 / eli-b
Cyanide, Weak Acid Dissociable	ND	mg/L		0.005		D2036C	06/29/11 16:07 / eli-b
NUTRIENTS							
Nitrogen, Nitrate+Nitrite as N	0.64	mg/L		0.05		E353.2	06/20/11 11:56 / reh
Nitrogen, Ammonia as N	ND	mg/L		0.1		E350.1	06/22/11 13:10 / reh
METALS, TOTAL RECOVERABLE							
Copper	0.001	mg/L		0.001		E200.8	06/23/11 20:54 / dck
Selenium	0.007	mg/L		0.001		E200.8	06/23/11 20:54 / dck

Report RL - Analyte reporting limit. Definitions: QCL - Quality control limit.

Prepared by Helena, MT Branch

Client: Tetra Tech Inc
Project: Beal Mtn

Lab ID: H11060342-013 Client Sample ID STA-3A **Report Date:** 07/07/11 **Collection Date:** 06/15/11 17:40

DateReceived: 06/17/11

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL PROPERTIES							
Solids, Total Suspended TSS @ 105 C	ND	mg/L		5		A2540 D	06/20/11 12:01 / cmm
INORGANICS							
Cyanide, Total	ND	mg/L		0.005		Kelada mod	06/22/11 14:52 / eli-b1
Cyanide, Free	ND	mg/L		0.20		A4500-CN-F	06/27/11 08:04 / eli-b
Cyanide, Weak Acid Dissociable	NA	mg/L		0.005		D2036C	06/27/11 07:57 / eli-b
- The Total Cyanide was analyzed, and was less tha	n the repo	ting limit for W	eak Acid Dissocial	ble (WAD)	Cyanide.	WAD Cyanide was	not analyzed.
NUTRIENTS							
Nitrogen, Nitrate+Nitrite as N	0.31	mg/L		0.05		E353.2	06/20/11 11:58 / reh
Nitrogen, Ammonia as N	ND	mg/L		0.1		E350.1	06/22/11 13:11 / reh
METALS, TOTAL RECOVERABLE							
Copper	0.004	mg/L		0.001		E200.8	06/23/11 20:59 / dck
Selenium	0.010	mg/L		0.001		E200.8	06/23/11 20:59 / dck

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

Prepared by Helena, MT Branch

Client: Tetra Tech Inc
Project: Beal Mtn
Lab ID: H11060342-014

Client Sample ID MINN-DN

Report Date: 07/07/11 **Collection Date:** 06/16/11 10:25 **DateReceived:** 06/17/11

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL PROPERTIES							
Solids, Total Suspended TSS @ 105 C	8	mg/L		5		A2540 D	06/20/11 12:01 / cmm
INORGANICS							
Cyanide, Total	ND	mg/L		0.005		Kelada mod	06/28/11 14:19 / eli-b
Cyanide, Free	ND	mg/L		0.20		A4500-CN-F	06/29/11 17:02 / eli-b
Cyanide, Weak Acid Dissociable	ND	mg/L		0.005		D2036C	06/29/11 17:00 / eli-b
NUTRIENTS							
Nitrogen, Nitrate+Nitrite as N	ND	mg/L		0.05		E353.2	06/20/11 12:00 / reh
Nitrogen, Ammonia as N	ND	mg/L		0.1		E350.1	06/22/11 13:12 / reh
METALS, TOTAL RECOVERABLE							
Copper	0.001	mg/L		0.001		E200.8	06/23/11 21:44 / dck
Selenium	ND	mg/L		0.001		E200.8	06/23/11 21:44 / dck

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

Prepared by Helena, MT Branch

Client: Tetra Tech Inc Project: Beal Mtn

Lab ID: H11060342-015

Client Sample ID STA-2

Report Date: 07/07/11 **Collection Date:** 06/16/11 14:30

DateReceived: 06/17/11

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL PROPERTIES							
Solids, Total Suspended TSS @ 105 C	ND	mg/L		5		A2540 D	06/20/11 12:01 / cmm
INORGANICS							
Cyanide, Total	ND	mg/L		0.005		Kelada mod	06/22/11 14:58 / eli-b1
Cyanide, Free	ND	mg/L		0.20		A4500-CN-F	06/27/11 08:04 / eli-b
Cyanide, Weak Acid Dissociable	NA	mg/L		0.005		D2036C	06/27/11 07:57 / eli-b
- The Total Cyanide was analyzed, and was less t	han the repo	rting limit for W	eak Acid Dissocial	ble (WAD)	Cyanide.	WAD Cyanide was	s not analyzed.
NUTRIENTS							
Nitrogen, Nitrate+Nitrite as N	0.06	mg/L		0.05		E353.2	06/20/11 12:06 / reh
Nitrogen, Ammonia as N	ND	mg/L		0.1		E350.1	06/22/11 13:14 / reh
METALS, TOTAL RECOVERABLE							
Copper	0.004	mg/L		0.001		E200.8	06/23/11 22:24 / dck
Selenium	0.002	mg/L		0.001		E200.8	06/23/11 22:24 / dck

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

Prepared by Helena, MT Branch

 Client:
 Tetra Tech Inc
 Report Date:
 07/07/11

 Project:
 Beal Mtn
 Collection Date:
 06/16/11 16:50

 Lab ID:
 H11060342-016
 DateReceived:
 06/17/11

 Client Sample ID
 Toe Drain
 Matrix:
 Aqueous

MCL/ **Analyses** Result QCL Method Analysis Date / By Units Qualifiers RL PHYSICAL PROPERTIES Solids, Total Suspended TSS @ 105 C ND 5 A2540 D mg/L 06/20/11 12:01 / cmm **INORGANICS** 0.005 Cyanide, Total ND Kelada mod 06/22/11 15:11 / eli-b1 mg/L Alkalinity, Total as CaCO3 mg/L A2320 B 06/20/11 20:41 / zeg 51 4 D 5 Sulfate 1200 mg/L E300.0 06/21/11 00:41 / zeg Cyanide, Free ND 0.20 A4500-CN-F mg/L 06/27/11 08:04 / eli-b NA mg/L 0.005 D2036C 06/27/11 07:57 / eli-b Cyanide, Weak Acid Dissociable - The Total Cyanide was analyzed, and was less than the reporting limit for Weak Acid Dissociable (WAD) Cyanide. WAD Cyanide was not analyzed. **NUTRIENTS** 0.05 Nitrogen, Nitrate+Nitrite as N 1.43 E353.2 06/20/11 12:12 / reh mg/L Nitrogen, Ammonia as N ND mg/L E350.1 06/22/11 13:15 / reh 0.1 **METALS, TOTAL RECOVERABLE** Copper 0.009 0.001 E200.8 06/23/11 22:28 / dck mg/L Selenium 0.074 0.001 E200.8 06/23/11 22:28 / dck mg/L

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

D - RL increased due to sample matrix.

Prepared by Helena, MT Branch

Client: Tetra Tech Inc Project: Beal Mtn

Lab ID: H11060342-017 Client Sample ID BCD-A **Report Date:** 07/07/11 **Collection Date:** 06/16/11 18:05

DateReceived: 06/17/11

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL PROPERTIES							
Solids, Total Suspended TSS @ 105 C	ND	mg/L		5		A2540 D	06/20/11 12:07 / cmm
INORGANICS							
Cyanide, Total	0.112	mg/L		0.005		Kelada mod	06/28/11 14:20 / eli-b
Cyanide, Free	ND	mg/L		0.20		A4500-CN-F	06/29/11 17:02 / eli-b
Cyanide, Weak Acid Dissociable	0.043	mg/L		0.005		D2036C	06/29/11 16:09 / eli-b
NUTRIENTS							
Nitrogen, Nitrate+Nitrite as N	2.57	mg/L		0.05		E353.2	06/20/11 12:32 / reh
Nitrogen, Ammonia as N	ND	mg/L		0.1		E350.1	06/22/11 13:16 / reh
METALS, TOTAL RECOVERABLE							
Copper	0.010	mg/L		0.001		E200.8	06/23/11 22:33 / dck
Selenium	0.016	mg/L		0.001		E200.8	06/23/11 22:33 / dck

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

Report Date: 07/07/11

Collection Date: 06/16/11 19:00

LABORATORY ANALYTICAL REPORT

Prepared by Helena, MT Branch

Client: Tetra Tech Inc

Project: Beal Mtn

Lab ID: H11060342-018

 Lab ID:
 H11060342-018
 DateReceived:
 06/17/11

 Client Sample ID
 STA-1
 Matrix:
 Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL PROPERTIES							
Solids, Total Suspended TSS @ 105 C	8	mg/L		5		A2540 D	06/20/11 12:07 / cmm
INORGANICS							
Cyanide, Total	ND	mg/L		0.005		Kelada mod	06/22/11 15:22 / eli-b1
Cyanide, Free	ND	mg/L		0.20		A4500-CN-F	06/27/11 08:04 / eli-b
Cyanide, Weak Acid Dissociable	NA	mg/L		0.005		D2036C	06/27/11 07:57 / eli-b
- The Total Cyanide was analyzed, and was less tha	n the repo	ting limit for We	ak Acid Dissocial	ble (WAD)	Cyanide. \	WAD Cyanide was	not analyzed.
NUTRIENTS							
Nitrogen, Nitrate+Nitrite as N	ND	mg/L		0.05		E353.2	06/20/11 12:16 / reh
Nitrogen, Ammonia as N	ND	mg/L		0.1		E350.1	06/22/11 13:17 / reh
METALS, TOTAL RECOVERABLE							
Copper	0.003	mg/L		0.001		E200.8	06/23/11 22:37 / dck
Selenium	ND	mg/L		0.001		E200.8	06/23/11 22:37 / dck

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

Prepared by Helena, MT Branch

Client: Tetra Tech Inc Project: Beal Mtn

Lab ID: H11060342-019

Client Sample ID BS-D

Report Date: 07/07/11
Collection Date: 06/16/11 19:45
DateReceived: 06/17/11

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL PROPERTIES							
Solids, Total Suspended TSS @ 105 C	ND	mg/L		5		A2540 D	06/20/11 12:07 / cmm
INORGANICS							
Cyanide, Total	ND	mg/L		0.005		Kelada mod	06/28/11 14:22 / eli-b
Cyanide, Free	ND	mg/L		0.20		A4500-CN-F	06/29/11 17:02 / eli-b
Cyanide, Weak Acid Dissociable	ND	mg/L		0.005		D2036C	06/29/11 17:00 / eli-b
NUTRIENTS							
Nitrogen, Nitrate+Nitrite as N	0.05	mg/L		0.05		E353.2	06/20/11 12:18 / reh
Nitrogen, Ammonia as N	ND	mg/L		0.1		E350.1	06/22/11 13:18 / reh
METALS, TOTAL RECOVERABLE							
Copper	0.002	mg/L		0.001		E200.8	06/23/11 22:42 / dck
Selenium	ND	mg/L		0.001		E200.8	06/23/11 22:42 / dck

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

Prepared by Helena, MT Branch

Client: Tetra Tech Inc
Project: Beal Mtn
Lab ID: H11060342-020

Collection Date: 06/16/11 06:00 **DateReceived:** 06/17/11

Report Date: 07/07/11

Client Sample ID DUP-1

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL PROPERTIES							
Solids, Total Suspended TSS @ 105 C	ND	mg/L		5		A2540 D	06/20/11 12:07 / cmm
INORGANICS							
Cyanide, Total	ND	mg/L		0.005		Kelada mod	06/22/11 15:27 / eli-b1
Cyanide, Free	ND	mg/L		0.20		A4500-CN-F	06/27/11 08:04 / eli-b
Cyanide, Weak Acid Dissociable	NA	mg/L		0.005		D2036C	06/27/11 07:57 / eli-b
- The Total Cyanide was analyzed, and was less	than the repo	rting limit for W	eak Acid Dissocial	ble (WAD)	Cyanide.	WAD Cyanide was	not analyzed.
NUTRIENTS							
Nitrogen, Nitrate+Nitrite as N	ND	mg/L		0.05		E353.2	06/20/11 12:19 / reh
Nitrogen, Ammonia as N	ND	mg/L		0.1		E350.1	06/22/11 13:20 / reh
METALS, TOTAL RECOVERABLE							
Copper	0.004	mg/L		0.001		E200.8	06/23/11 22:46 / dck
Selenium	0.002	mg/L		0.001		E200.8	06/23/11 22:46 / dck

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

Prepared by Helena, MT Branch

Client:Tetra Tech IncReport Date:07/11/11Project:Beal MtnWork Order:H11060342

Analyte	Result Units	RL %REC Low Limit High Limit RPD RPDLimit Qual
Method: A2320 B		Batch: R71994
Sample ID: MBLK Alkalinity, Total as CaCO3	Method Blank 1 mg/L	Run: MAN-TECH_110620A 06/20/11 16:39 0.6
Sample ID: LCS-06202011 Alkalinity, Total as CaCO3	Laboratory Control Sample 610 mg/L	Run: MAN-TECH_110620A 06/20/11 16:47 4.0 102 90 110
Sample ID: H11060342-008ADUP Alkalinity, Total as CaCO3	Sample Duplicate 52 mg/L	Run: MAN-TECH_110620A 06/20/11 20:11 4.0 0.8 20
Sample ID: H11060342-010AMS Alkalinity, Total as CaCO3	Sample Matrix Spike 650 mg/L	Run: MAN-TECH_110620A 06/20/11 20:27 4.0 90 90 110

Prepared by Helena, MT Branch

Client:Tetra Tech IncReport Date:07/11/11Project:Beal MtnWork Order:H11060342

Analyte	Result Units	RL %REC Low Limit High Limit RPD RPDLimit Qual
Method: A2540 D		Batch: 12615
Sample ID: MB-12615	Method Blank	Run: ACCU-124 (14410200)_110620 06/20/11 11:53
Solids, Total Suspended TSS @ 105 C	ND mg/L	1
Sample ID: LCS-12615	Laboratory Control Sample	Run: ACCU-124 (14410200)_110620 06/20/11 11:54
Solids, Total Suspended TSS @ 105 C	1910 mg/L	10 96 70 130
Sample ID: H11060342-001ADUP	Sample Duplicate	Run: ACCU-124 (14410200)_110620 06/20/11 11:54
Solids, Total Suspended TSS @ 105 C	8.00 mg/L	10 5
Sample ID: H11060342-011ADUP	Sample Duplicate	Run: ACCU-124 (14410200)_110620 06/20/11 12:00
Solids, Total Suspended TSS @ 105 C	ND mg/L	10 5

Prepared by Helena, MT Branch

Client:Tetra Tech IncReport Date:07/11/11Project:Beal MtnWork Order:H11060342

Analyte	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit Qual
Method: D2036C								Batch: B_55028
Sample ID: MB-55028	Method Blank				Run: SUB-	B168039		06/28/11 15:15
Cyanide, Weak Acid Dissociable	ND	mg/L	0.002					
Sample ID: H11060342-019D	Sample Matrix	Spike			Run: SUB-	B168039		06/28/11 14:24
Cyanide, Weak Acid Dissociable	0.106	mg/L	0.0050	106	80	120		
Sample ID: H11060342-019D	Sample Matrix	Spike Duplicate			Run: SUB-	B168039		06/28/11 14:26
Cyanide, Weak Acid Dissociable	0.101	mg/L	0.0050	101	80	120	0.0	10
Sample ID: LCS-55028	Laboratory Cor	ntrol Sample			Run: SUB-	B168039		06/28/11 15:14
Cyanide, Weak Acid Dissociable	0.106	mg/L	0.0050	106	90	110		
Method: D2036C								Batch: B_55028
Sample ID: H11060342-002D	Sample Matrix	Spike Duplicate		Run: SUB-B168137				06/29/11 16:15
Cyanide, Weak Acid Dissociable	0.116	mg/L	0.0050	116	80	120	0.3	10
Sample ID: MB-55028	Method Blank				Run: SUB-	B168137		06/29/11 14:04
Cyanide, Weak Acid Dissociable	ND	mg/L	0.002					
Sample ID: H11060342-002D	Sample Matrix	Spike			Run: SUB-	B168137		06/29/11 16:13
Cyanide, Weak Acid Dissociable	0.116	mg/L	0.0050	116	80	120		
Sample ID: LCS-55028	Laboratory Cor	ntrol Sample			Run: SUB-	B168137		06/29/11 13:58
Cyanide, Weak Acid Dissociable	0.0987	mg/L	0.0050	99	90	110		

Prepared by Helena, MT Branch

Client:Tetra Tech IncReport Date:07/11/11Project:Beal MtnWork Order:H11060342

Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E200.8						Analytic	cal Run: IC	CPMS204-B	_110622A
Sample ID:	ICV STD	Initial Calibration	on Verification Sta	andard					06/22	2/11 23:20
Copper		0.0509	mg/L	0.010	102	90	110			
Selenium		0.0502	mg/L	0.0050	100	90	110			
Sample ID:	ICSA	Interference C	neck Sample A						06/22	2/11 23:25
Copper		0.000457	mg/L	0.010						
Selenium		0.000208	mg/L	0.0050						
Sample ID:	ICSAB	Interference C	neck Sample AB						06/22	2/11 23:29
Copper		0.0210	mg/L	0.010	105	70	130			
Selenium		0.0105	mg/L	0.0050	105	70	130			
Sample ID:	ICV STD	Initial Calibration	on Verification Sta	andard					06/23	3/11 05:52
Copper		0.0506	mg/L	0.010	101	90	110			
Selenium		0.0511	mg/L	0.0050	102	90	110			
Sample ID:	ICSA	Interference C	heck Sample A						06/23	3/11 05:57
Copper		0.000462	mg/L	0.010						
Selenium		0.000208	mg/L	0.0050						
Sample ID:	ICSAB	Interference C	heck Sample AB						06/23	3/11 06:01
Copper		0.0206	mg/L	0.010	103	70	130			
Selenium		0.0106	mg/L	0.0050	106	70	130			
Sample ID:	ICV STD	Initial Calibration	on Verification Sta	andard					06/23	3/11 15:57
Copper		0.0508	mg/L	0.010	102	90	110			
Selenium		0.0495	mg/L	0.0050	99	90	110			
Sample ID:	ICSA	Interference C	neck Sample A						06/23	3/11 16:01
Copper		0.000381	mg/L	0.010						
Selenium		0.000230	mg/L	0.0050						
Sample ID:	ICSAB	Interference C	neck Sample AB						06/23	3/11 16:06
Copper		0.0198	mg/L	0.010	99	70	130			
Selenium		0.00970	mg/L	0.0050	97	70	130			
Sample ID:	ICV STD	Initial Calibration	on Verification Sta	andard					06/24	1/11 06:10
Copper		0.0510	mg/L	0.010	102	90	110			
Selenium		0.0499	mg/L	0.0050	100	90	110			
Sample ID:	ICSA	Interference C	neck Sample A						06/24	1/11 06:14
Copper		0.000443	mg/L	0.010						
Selenium		0.000249	mg/L	0.0050						
Sample ID:	ICSAB	Interference C	neck Sample AB						06/24	1/11 06:19
Copper		0.0201	mg/L	0.010	100	70	130			

Qualifiers:

RL - Analyte reporting limit.

Prepared by Helena, MT Branch

Client:Tetra Tech IncReport Date:07/11/11Project:Beal MtnWork Order:H11060342

E200.8 ICSAB	Interference C								
ICSAB	Interference C					Analytica	l Run:	CPMS204-E	3_110622A
	interrerence C	heck Sample	AB					06/2	24/11 06:19
	0.00967	mg/L	0.0050	97	70	130			
ICV STD	Initial Calibration	on Verification	Standard					06/2	24/11 12:34
	0.0513	mg/L	0.010	103	90	110			
	0.0502	mg/L	0.0050	100	90	110			
ICSA	Interference C	heck Sample	A					06/2	24/11 12:41
	0.000413	mg/L	0.010						
	0.000180	mg/L	0.0050						
ICSAB	Interference C	heck Sample	АВ					06/2	24/11 12:46
	0.0198	mg/L	0.010	99	70	130			
	0.00986	mg/L	0.0050	99	70	130			
ICV STD	Initial Calibration	on Verification	Standard					06/2	25/11 01:24
	0.0506	mg/L	0.010	101	90	110			
	0.0511	mg/L	0.0050	102	90	110			
ICSA	Interference C	heck Sample	A					06/2	25/11 01:29
	0.000429	mg/L	0.010						
	0.000197	mg/L	0.0050						
ICSAB	Interference C	heck Sample	AB					06/2	25/11 01:34
	0.0199	mg/L	0.010	100	70	130			
	0.00969	mg/L	0.0050	97	70	130			
E200.8								Ва	atch: 12609
MB-12609	Method Blank				Run: ICPM	S204-B_110622A		06/2	23/11 13:11
	ND	mg/L	0.0004						
	ND	mg/L	0.0002						
LCS-12609	Laboratory Cor	ntrol Sample			Run: ICPM	S204-B_110622A		06/2	23/11 13:16
	0.490	mg/L	0.010	98	85	115			
	0.528	mg/L	0.0050	106	85	115			
H11060328-007CMS3	Sample Matrix	Spike			Run: ICPM	S204-B_110622A		06/2	23/11 14:01
	0.979	mg/L	0.010	97	70	130			
	1.03	mg/L	0.0050	102	70	130			
H11060328-007CMSD3	Sample Matrix	Spike Duplica	ate	Run: ICPMS204-B_110622A				06/2	23/11 14:05
	0.975	mg/L	0.010	96	70	130	0.4	20	
	1.06	mg/L	0.0050	105	70	130	2.9	20	
	ICSAB ICV STD ICSA ICSAB E200.8 MB-12609 LCS-12609 H11060328-007CMS3	0.000413 0.000180 ICSAB Interference C 0.0198 0.00986 ICV STD Initial Calibration 0.0506 0.0511 ICSA Interference C 0.000429 0.000197 ICSAB Interference C 0.0199 0.00969 E200.8 MB-12609 Method Blank ND ND LCS-12609 Laboratory Con 0.490 0.528 H11060328-007CMS3 Sample Matrix 0.979 1.03 H11060328-007CMSD3 Sample Matrix 0.975 1.06	0.000413 mg/L 0.000180 mg/L 0.000180 mg/L 0.00198 mg/L 0.0198 mg/L 0.00986 mg/L 0.00986 mg/L 0.00506 mg/L 0.0511 mg/L 0.0511 mg/L 0.000429 mg/L 0.000429 mg/L 0.000197 mg/L 0.00199 mg/L 0.00969 mg/L 0.00969 mg/L 0.00969 mg/L 0.00969 mg/L 0.00969 mg/L 0.0528 mg/L 0.528 mg/L 0.528 mg/L 0.979 mg/L 0.975 mg/L 0.975 mg/L 0.0975 mg/L 0.00986 mg/L 0.00975 mg/L	0.000413 mg/L 0.010 0.000180 mg/L 0.0050 1CSAB	O.000413 mg/L	0.000413 mg/L 0.010 0.0050	CCSAB	CCSAB	CSAB

Qualifiers:

RL - Analyte reporting limit.

Prepared by Helena, MT Branch

Client:Tetra Tech IncReport Date:07/11/11Project:Beal MtnWork Order:H11060342

Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E200.8								Bato	ch: 12619
Sample ID:	MB-12619	Method Blank				Run: ICPM	S204-B_110622A		06/23	/11 21:26
Copper		ND	mg/L	0.0004						
Selenium		ND	mg/L	0.0002						
Sample ID:	LCS-12619	Laboratory Cor	ntrol Sample			Run: ICPM	S204-B_110622A		06/23/11 21:30	
Copper		0.488	mg/L	0.010	98	85	115			
Selenium		0.490	mg/L	0.0050	98	85	115			
Sample ID:	H11060342-014BMS3	Sample Matrix	Spike			Run: ICPM	S204-B_110622A		06/23	/11 21:48
Copper		0.478	mg/L	0.010	95	70	130			
Selenium		0.477	mg/L	0.0050	95	70	130			
Sample ID:	H11060342-014BMSD3	Sample Matrix	Spike Duplicate			Run: ICPM	S204-B_110622A		06/23	/11 21:52
Copper		0.474	mg/L	0.010	94	70	130	1.0	20	
Selenium		0.464	mg/L	0.0050	93	70	130	2.8	20	
Method:	E200.8								Batch	n: R72108
Sample ID:	ICB	Method Blank				Run: ICPM	S204-B_110622A		06/23	/11 06:28
Copper		ND	mg/L	3E-05						
Selenium		ND	mg/L	4E-05						
Sample ID:	LFB	Laboratory For	tified Blank			Run: ICPM	S204-B_110622A		06/23	/11 06:33
Copper		0.0498	mg/L	0.010	100	85	115			
Selenium		0.0484	mg/L	0.0050	97	85	115			
Sample ID:	H11060332-007BMS	Sample Matrix	Spike			Run: ICPM	S204-B_110622A		06/23	/11 18:43
Copper		0.0499	mg/L	0.010	98	70	130			
Selenium		0.0492	mg/L	0.0050	96	70	130			
Sample ID:	H11060332-007BMSD	Sample Matrix	Spike Duplicate			Run: ICPM	S204-B_110622A		06/23	/11 18:47
Copper		0.0498	mg/L	0.010	97	70	130	0.2	20	
Selenium		0.0475	mg/L	0.0050	93	70	130	3.5	20	
Sample ID:	H11060342-008BMS	Sample Matrix	Spike			Run: ICPM	S204-B_110622A		06/23	/11 20:27
Copper		0.0494	mg/L	0.010	96	70	130			
Selenium		0.117	mg/L	0.0050	87	70	130			
Sample ID:	H11060342-008BMSD	Sample Matrix	Spike Duplicate			Run: ICPM	S204-B_110622A		06/23	/11 20:32
Copper		0.0500	mg/L	0.010	97	70	130	1.2	20	
Selenium		0.119	mg/L	0.0050	91	70	130	1.8	20	

Qualifiers:

RL - Analyte reporting limit.

Prepared by Helena, MT Branch

Client:Tetra Tech IncReport Date:07/11/11Project:Beal MtnWork Order:H11060342

Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E300.0							Analytical F	Run: IC101-H	_110620A
Sample ID:	ICV062011-12	Initial Calibratio	n Verification Sta	andard					06/20)/11 14:55
Sulfate		200	mg/L	1.0	102	90	110			
Sample ID:	CCV062011-45	Continuing Cali	bration Verification	on Standard					06/20	0/11 23:09
Sulfate		410	mg/L	1.0	103	90	110			
Method:	E300.0								Batcl	n: R72019
Sample ID:	ICB062011-13	Method Blank				Run: IC101	-H_110620A		06/20)/11 15:11
Sulfate		ND	mg/L	0.5						
Sample ID:	LFB062011-14	Laboratory Fort	fied Blank			Run: IC101	-H_110620A		06/20)/11 15:26
Sulfate		210	mg/L	1.1	104	90	110			
Sample ID:	LFBD062011-14	Laboratory Fort	fied Blank			Run: IC101	-H_110620A		06/20)/11 15:42
Sulfate		200	mg/L	1.1	101	90	110			
Sample ID:	H11060346-003AMS	Sample Matrix S	Spike			Run: IC101	-H_110620A		06/21	/11 01:43
Sulfate		440	mg/L	1.1	116	90	110			S
Sample ID:	H11060346-003AMSD	Sample Matrix S	Spike Duplicate			Run: IC101	-H_110620A		06/21	/11 01:58
Sulfate		460	mg/L	1.1	124	90	110	3.7	20	S

Qualifiers:

RL - Analyte reporting limit.

S - Spike recovery outside of advisory limits.

Prepared by Helena, MT Branch

Client:Tetra Tech IncReport Date:07/11/11Project:Beal MtnWork Order:H11060342

Analyte	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E350.1						Analyt	ical Rur	: FIA203-HE	_110622A
Sample ID: ICV	Initial Calibratio	n Verification Sta	ndard					06/22	2/11 11:31
Nitrogen, Ammonia as N	1.02	mg/L	0.10	102	90	110			
Sample ID: ICB	Initial Calibratio	n Blank, Instrume	ent Blank					06/22	2/11 11:36
Nitrogen, Ammonia as N	-0.0414	mg/L	0.10		0	0			
Method: E350.1								Batch	n: R72064
Sample ID: LCS	Laboratory Con	trol Sample			Run: FIA20	3-HE_110622A		06/22	2/11 11:32
Nitrogen, Ammonia as N	16.5	mg/L	0.50	105	90	110			
Sample ID: LFB	Laboratory Fort	ified Blank			Run: FIA20	3-HE_110622A		06/22	2/11 11:33
Nitrogen, Ammonia as N	1.00	mg/L	0.10	101	90	110			
Sample ID: MBLK	Method Blank				Run: FIA20	3-HE_110622A		06/22	2/11 11:54
Nitrogen, Ammonia as N	ND	mg/L	0.002						
Sample ID: H11060342-001CMS	Sample Matrix	Spike			Run: FIA20	3-HE_110622A		06/22	2/11 12:49
Nitrogen, Ammonia as N	0.990	mg/L	0.10	101	80	120			
Sample ID: H11060342-001CMSD	Sample Matrix	Spike Duplicate			Run: FIA20	3-HE_110622A		06/22	2/11 12:50
Nitrogen, Ammonia as N	0.969	mg/L	0.10	99	80	120	2.1	10	
Sample ID: H11060342-011CMS	Sample Matrix	Spike			Run: FIA20	3-HE_110622A		06/22	2/11 13:08
Nitrogen, Ammonia as N	0.893	mg/L	0.10	91	80	120			
Sample ID: H11060342-011CMSD	Sample Matrix	Spike Duplicate			Run: FIA20	3-HE_110622A		06/22	2/11 13:09
Nitrogen, Ammonia as N	0.884	mg/L	0.10	90	80	120	1.0	10	

Qualifiers:

Prepared by Helena, MT Branch

Client:Tetra Tech IncReport Date:07/11/11Project:Beal MtnWork Order:H11060342

Analyte	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E353.2						Analytica	l Run: N	NUTRIENTS_	_110620A
Sample ID: ICV-1 Nitrogen, Nitrate+Nitrite as N	Initial Calibratio 1.09	n Verification Sta mg/L	ndard 0.050	109	90	110		06/20)/11 10:08
Sample ID: ICB Nitrogen, Nitrate+Nitrite as N	Initial Calibratio	n Blank, Instrume mg/L	ent Blank 0.050		0	0		06/20)/11 10:15
Sample ID: CCV-33 Nitrogen, Nitrate+Nitrite as N	Continuing Cali 0.520	bration Verificatio mg/L	n Standard 0.050	104	90	110		06/20)/11 11:12
Sample ID: CCV-46 Nitrogen, Nitrate+Nitrite as N	Continuing Cali 0.500	bration Verificatio mg/L	n Standard 0.050	100	90	110		06/20)/11 11:38
Sample ID: CCV-59 Nitrogen, Nitrate+Nitrite as N	Continuing Cali 0.520	bration Verificatio mg/L	n Standard 0.050	104	90	110		06/20)/11 12:04
Method: E353.2						Ва	atch: A2	2011-06-20_5	_NO3_01
Sample ID: LCS-2 Nitrogen, Nitrate+Nitrite as N	Laboratory Con 25.5	trol Sample mg/L	0.20	105	Run: NUTR 90	IENTS_110620A 110		06/20)/11 10:10
Sample ID: LFB-3 Nitrogen, Nitrate+Nitrite as N	Laboratory Fort	ified Blank mg/L	0.050	104	Run: NUTR 90	IENTS_110620A 110		06/20)/11 10:12
Sample ID: MBLK-7 Nitrogen, Nitrate+Nitrite as N	Method Blank ND	mg/L	0.006		Run: NUTR	IENTS_110620A		06/20)/11 10:19
Sample ID: H11060332-006DMS Nitrogen, Nitrate+Nitrite as N	Sample Matrix 0.990	Spike mg/L	0.050	99	Run: NUTR	IENTS_110620A 110		06/20)/11 11:18
Sample ID: H11060332-006DMSD Nitrogen, Nitrate+Nitrite as N	Sample Matrix 1.00	Spike Duplicate mg/L	0.050	100	Run: NUTR 90	IENTS_110620A 110	1.0	06/20 20)/11 11:20
Sample ID: H11060342-009CMS Nitrogen, Nitrate+Nitrite as N	Sample Matrix	Spike mg/L	0.050	100	Run: NUTR 90	IENTS_110620A 110		06/20)/11 11:48
Sample ID: H11060342-009CMSD Nitrogen, Nitrate+Nitrite as N	Sample Matrix	Spike Duplicate mg/L	0.050	100	Run: NUTR 90	IENTS_110620A 110	0.0	06/20 20)/11 11:50
Sample ID: H11060342-015CMS Nitrogen, Nitrate+Nitrite as N	Sample Matrix 1.07	Spike mg/L	0.050	101	Run: NUTR 90	IENTS_110620A 110		06/20)/11 12:08
Sample ID: H11060342-015CMSD Nitrogen, Nitrate+Nitrite as N	Sample Matrix 1.08	Spike Duplicate mg/L	0.050	102	Run: NUTR 90	IENTS_110620A 110	0.9	06/20 20)/11 12:10

Qualifiers:

RL - Analyte reporting limit.

Prepared by Helena, MT Branch

Client:Tetra Tech IncReport Date:07/11/11Project:Beal MtnWork Order:H11060342

Analyte	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit Qual
Method: Kelada mod							Analytic	cal Run: SUB-B167706
Sample ID: ICV	Initial Calibration	n Verification Sta	ındard					06/22/11 12:52
Cyanide, Total	0.156	mg/L	0.0050	104	90	110		
Method: Kelada mod								Batch: B_R167706
Sample ID: MB	Method Blank				Run: SUB-I	B167706		06/22/11 12:57
Cyanide, Total	ND	mg/L	0.002					
Sample ID: B11062163-005GMS	Sample Matrix	Spike			Run: SUB-	B167706		06/22/11 13:46
Cyanide, Total	0.102	mg/L	0.0050	102	90	110		
Sample ID: LFB	Laboratory Fort	ified Blank			Run: SUB-	B167706		06/22/11 12:55
Cyanide, Total	0.0994	mg/L	0.0050	99	90	110		
Sample ID: B11062163-005GMSD	Sample Matrix	Spike Duplicate			Run: SUB-	B167706		06/22/11 13:49
Cyanide, Total	0.101	mg/L	0.0050	101	90	110	1.5	10
Sample ID: H11060342-016D	Sample Matrix	Spike			Run: SUB-I	B167706		06/22/11 15:13
Cyanide, Total	0.104	mg/L	0.0050	104	90	110		
Sample ID: H11060342-006D	Sample Matrix	Spike Duplicate			Run: SUB-l	B167706		06/22/11 14:32
Cyanide, Total	0.126	mg/L	0.0050	111	90	110	4.8	10 S
Sample ID: H11060342-006D	Sample Matrix	Spike			Run: SUB-l	B167706		06/22/11 14:29
Cyanide, Total	0.120	mg/L	0.0050	105	90	110		
Sample ID: H11060342-016D	Sample Matrix	Spike Duplicate		Run: SUB-B167706				06/22/11 15:16
Cyanide, Total	0.0985	mg/L	0.0050	99	90	110	5.7	10
Method: Kelada mod							Analytic	cal Run: SUB-B168039
Sample ID: ICV-1	Initial Calibration	n Verification Sta	ındard					06/28/11 11:35
Cyanide, Total	0.159	mg/L	0.0050	106	90	110		
Method: Kelada mod								Batch: B_55001
Sample ID: H11060342-019D	Sample Matrix	Spike Duplicate			Run: SUB-	B168039		06/28/11 14:26
Cyanide, Total	0.101	mg/L	0.0050	101	90	110	4.1	10
Sample ID: LCS-55001	Laboratory Con	trol Sample			Run: SUB-l	B168039		06/28/11 11:49
Cyanide, Total	0.0998	mg/L	0.0050	100	90	110		
Sample ID: MB-55001	Method Blank				Run: SUB-l	B168039		06/28/11 11:53
Cyanide, Total	ND	mg/L	0.002					
Sample ID: H11060342-019D	Sample Matrix	Spike			Run: SUB-I	B168039		06/28/11 14:24
Cyanide, Total	0.106	mg/L	0.0050	106	90	110		

Qualifiers:

RL - Analyte reporting limit.

ND - Not detected at the reporting limit.

S - Spike recovery outside of advisory limits.

Workorder Receipt Checklist

H11060342

Tetra Tech Inc

Login completed by: Wanda Johnson Date Received: 6/17/2011
Reviewed by: BL2000\ablackburn Received by: TLL

Reviewed Date: 6/21/2011

Carrier Hand Del

name:

Shipping container/cooler in good condition?	Yes 🗸	No 🗌	Not Present
Custody seals intact on shipping container/cooler?	Yes	No 🗌	Not Present ✓
Custody seals intact on sample bottles?	Yes	No 🗌	Not Present ✓
Chain of custody present?	Yes √	No 🗌	
Chain of custody signed when relinquished and received?	Yes √	No 🗌	
Chain of custody agrees with sample labels?	Yes √	No 🗌	
Samples in proper container/bottle?	Yes √	No 🗌	
Sample containers intact?	Yes √	No 🗌	
Sufficient sample volume for indicated test?	Yes √	No 🗌	
All samples received within holding time?	Yes ✓	No 🗌	
Container/Temp Blank temperature:	4.8℃		
Water - VOA vials have zero headspace?	Yes	No 🗌	No VOA vials submitted
Water - pH acceptable upon receipt?	Yes 🗸	No 🗌	Not Applicable

Contact and Corrective Action Comments:

None

		Chain of Custody and Analytical Re	cai Request Record	Öra	Page of
Company Name:		Project Name, PWS, Permit, Etc.	as much information as possible. Sample	Sample Origin	EPA/State Compliance:
Tetra Tech		Beal Mountain	Mine	State: MT	Yes No
ઽ		t Name:	Phone/Fax:	Email:	Sampler: (Please Print)
Helena, MT 59601		443-5210	james. mause	@ tetratech.com	Jir Mans
Invoice Address:		Invoice Contact & Phone:		Purchase Order:	Quote/Bottle Order:
Same		Same			7/7/4
Special Report/Formats:		ANIAILYSIS		Contact ELI prior to RUSH sample submitta	to Shipped by:
DW T		ntainers S V B O I Solids say Othe Water	IED	R scheduling – See	Coole
/WWTP	Format: LEVEL IV	er of Co pe: A W ater <u>S</u> oil on <u>B</u> ioas Drinking	TACH	U Comments:	Receipt Temp
	NELAC	Number Type Air Was Vegetation DW - E	EE AT	S see Attac	On Ice: Y (N. Custody Seal On Bottle Y N
SAMPLE IDENTIFICATION (Name, Location, Interval, etc.)	Collection Collection Date Time	MATRIX		·I	≺ ≺
	6-15-11 0815	AN XXXX			X11060342
25PR-3	0900				NIL.
SPR-DY	1055				
15PR-18	//30				JSE
5PR-D2	1215				YU
SPR-2	/3/0				OR
1 SPR-19	/345				AT
*SPR-5	1445				OR.
STA-4	1500				VB(
O	V 1545	MINI			
	Date/Time: € 6-/17 -//	1010 R 7	Received by (print):	Date/Time:	Signature:
MUST be Relinquished by (print):		Signature:	Received by (print):	Date/Time:	Signature:
Sample Disposal:	Return to Client:	Lab Disposal:	Received By Labora Dry:	Date/Time: / 10110	Signature

Ž

In certain circumstances, samples submitted to Energy Laboratories, Inc. may be subcontracted to other certified laboratories in order to complete the analysis requested.

This serves as notice of this possibility. All sub-contract data will be clearly notated on your analytical report.

Visit our web site at www.energylab.com for additional information, downloadable fee schedule, forms, and links.

Lab Disposal:

11/10:10

ľ	
ı	
ŀ	
ı	
1	
l	
ĺ	
ì	
ļ	
l	
į	
Ì	
WINDS	

Chain of Custody and Analytical Request Record

	PLEASE PRINT (Provide as much information as possible.)		-
Company Name:	3,	e Origin ,	Ste Co
Tetra Tech	Beal Mountain Mine	A	Yes No L
Address:	Name: Phone/Fax:		Sampler: (Please Print)
٠ ' <u>ب</u>	Tim Mans james, Mans @ to	@ testra tech. com	Jim Maus
nyoice Address:	Invoice Contact & Phone:	Purchase Order: Q	Quote/Bottle Order:
Same	Same		Shidned by:
Special Report/Formats:	ŒILSEM®ER SISATVIVIV	RUSH sample submittal	
	V B O D olids y Other ater	TAT)	Cooler ID(s):
DW EDD/EDT(Electronic Data)	AWS Soils/Sioassa king W	ound (Receipt Temp
	ensic enable	Turnar	On Ice:
	Sample Air Vegel DW Che Recover	SEE SEE SEE Y	Custody Seal On Bottle On Cooler N
SAMPLE IDENTIFICATION Collection Collection	Total	S	Signature Y N
),	45 XXXX		11060342-011
			DINI
A			
1 MINN-DN 6-16-11 1025			WS
5 574-2 .1 1430			RY
Toe Drain 1650			
			RAT
87A-1 1900			301
85-D V 1945			AVE
10 DWO - 1 6-16-11 0600			Signature []
Date/Time:	Signature:	Care in the	Ogradio
Relinquished by (print): Date/Time:	Signature: Receive	Date/Time:	Signarus
Signed Sample Disposal: Return to Client:	Lab Disposal:	1 / WILLIAM (Lacy Corner
Sample Disposal			

In certain circumstances, samples submitted to Energy Laboratories, Inc. may be subcontracted to other dertified laboratories in order to complete the analysis requested.

This serves as notice of this possibility. All sub-contract data will be clearly notated on your analytical report.

Visit our web site at www.energylab.com for additional information, downloadable fee schedule, forms, and links.

Beal 2011 Site Wide Monitoring Analytic Summary:

Surface Water 23 samples X 2 events For Table 4

SURFACE WATER A	TABL	E 4 ANALYTICAL REQUIF	REMENTS
Parameter	MDL (mg/L) ⁽¹⁾	Method No.	Max. Holding Time
	Physicoci	hemical	
Total Suspended Solids	5.0	E160.2	7 Days
Alkalinity, total ³	4.0	A2320B	14 Days
	Metal	is ⁽²⁾	
Copper	0.001	E200.8	6 Months
Selenium	0.001	E200.8	6 Months
	Inorga	nics	
Cyanide, free	0.2	SM4500 CN F	14 Days
Cyanide, total	0.005	SM4500 CN / 335.4	14 Days
Cyanide, weak acid dissociable (WAD)	0.005	SM 4500	14 Days
	Nutrie	ents	
Ammonia (low level)	0.1	SM4500 NH3	28 Days
Nitrogen, Nitrate+Nitrite as N	0.05	E353.2	28 Days
Sulfate ³	1.0	E300.0	28 Days

MDL = Method Detection Limit in milligrams per liter (mg/L)
Surface water and spring parameters will be analyzed for total recoverable metals.
Alkalinity and Sulfate to be analyzed only at locations SPR-5, SPR-10A, Toe Drain, and MB-Drain.

ANALYTICAL SUMMARY REPORT

July 25, 2011

Tetra Tech Inc 303 Irene St Helena, MT 59601

Workorder No.: H11070204 Quote ID: H634 - Beal 2011 Site Wide Monitoring

Project Name: Beal Mtn

Energy Laboratories Inc Helena MT received the following 2 samples for Tetra Tech Inc on 7/14/2011 for analysis.

Sample ID	Client Sample ID	Collect Date	Receive Date	Matrix	Test
H11070204-001	BCD	07/13/11 15	:05 07/14/11	Surface Water	Metals by ICP/ICPMS, Tot. Rec. Alkalinity Cyanide, Free Cyanide, Total Manual Distillation Total Cyanide Digestion Cyanide, Weak Acid Dissociable WAD Cyanide Distillation Conductivity Anions by Ion Chromatography Nitrogen, Ammonia Nitrogen, Nitrate + Nitrite Metals Digestion by EPA 200.2 Preparation for TSS Solids, Total Suspended
H11070204-002	BCD-Barren	07/13/11 14	:45 07/14/11	Surface Water	Same As Above

This report was prepared by Energy Laboratories, Inc., 3161 E. Lyndale Ave., Helena, MT 59604. Any exceptions or problems with the analyses are noted in the Laboratory Analytical Report, the QA/QC Summary Report, or the Case Narrative.

The results as reported relate only to the item(s) submitted for testing.

If you have any questions regarding these test results, please call.

Report Approved By:

Report Date: 07/25/11

CLIENT: Tetra Tech Inc Project: Beal Mtn

CASE NARRATIVE Sample Delivery Group: H11070204

Tests associated with analyst identified as ELI-B were subcontracted to Energy Laboratories, 1120 S. 27th St., Billings, MT, EPA Number MT00005.

Prepared by Helena, MT Branch

Client: Tetra Tech Inc
Project: Beal Mtn

Lab ID: H11070204-001

Client Sample ID BCD

Report Date: 07/25/11
Collection Date: 07/13/11 15:05
DateReceived: 07/14/11

Matrix: Surface Water

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL PROPERTIES							
Solids, Total Suspended TSS @ 105 C	ND	mg/L		5		A2540 D	07/14/11 12:53 / cmm
INORGANICS							
Cyanide, Total	ND	mg/L		0.005		Kelada mod	07/19/11 14:16 / eli-b
Alkalinity, Total as CaCO3	160	mg/L		4		A2320 B	07/14/11 18:17 / zeg
Sulfate	1400	mg/L	D	5		E300.0	07/18/11 23:14 / zeg
Cyanide, Free	NA	mg/L		0.20		A4500-CN-F	07/20/11 15:09 / eli-b
Cyanide, Weak Acid Dissociable	NA	mg/L		0.005		D2036C	07/19/11 14:55 / eli-b
- The Total Cyanide was analyzed, and was les	s than the repor	rting limit for W	eak Acid Dissocia	ble (WAD)	Cyanide. \	WAD Cyanide was	s not analyzed.
- The Weak Acid Dissociable (WAD) Cyanide v	vas analyzed, a	nd was <0.2 m	g/L, the detection li	imit for Fre	e Cyanide.	Free Cyanide wa	s not analyzed.
NUTRIENTS							
Nitrogen, Nitrate+Nitrite as N	14.0	mg/L	D	0.1		E353.2	07/15/11 10:12 / reh
Nitrogen, Ammonia as N	ND	mg/L		0.1		E350.1	07/18/11 13:52 / reh
METALS, TOTAL RECOVERABLE							
Copper	0.001	mg/L		0.001		E200.8	07/18/11 22:01 / sld
Selenium	0.086	mg/L		0.001		E200.8	07/18/11 22:01 / sld

Report RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

 $\ensuremath{\mathsf{D}}$ - $\ensuremath{\mathsf{RL}}$ increased due to sample matrix.

Client Sample ID BCD-Barren

LABORATORY ANALYTICAL REPORT

Prepared by Helena, MT Branch

 Client:
 Tetra Tech Inc
 Report Date: 07/25/11

 Project:
 Beal Mtn
 Collection Date: 07/13/11 14:45

 Lab ID:
 H11070204-002
 DateReceived: 07/14/11

Matrix: Surface Water

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL PROPERTIES							
Solids, Total Suspended TSS @ 105 C	ND	mg/L		5		A2540 D	07/14/11 12:54 / cmm
INORGANICS							
Cyanide, Total	0.189	mg/L	D	0.006		Kelada mod	07/19/11 14:18 / eli-b
Alkalinity, Total as CaCO3	89	mg/L		4		A2320 B	07/14/11 18:24 / zeg
Sulfate	170	mg/L		1		E300.0	07/18/11 23:26 / zeg
Cyanide, Free	NA	mg/L		0.20		A4500-CN-F	07/20/11 15:09 / eli-b
Cyanide, Weak Acid Dissociable	0.038	mg/L		0.005		D2036C	07/20/11 11:22 / eli-b
- The Weak Acid Dissociable (WAD) Cyanide was	s analyzed, a	nd was <0.2 m	g/L, the detection I	imit for Fre	e Cyanide.	Free Cyanide wa	s not analyzed.
NUTRIENTS							
Nitrogen, Nitrate+Nitrite as N	2.72	mg/L		0.05		E353.2	07/15/11 10:45 / reh
Nitrogen, Ammonia as N	ND	mg/L		0.1		E350.1	07/18/11 13:56 / reh
METALS, TOTAL RECOVERABLE							
Copper	0.007	mg/L		0.001		E200.8	07/18/11 22:06 / sld
Selenium	0.009	mg/L		0.001		E200.8	07/18/11 22:06 / sld

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

 $\ensuremath{\mathsf{D}}$ - $\ensuremath{\mathsf{RL}}$ increased due to sample matrix.

Prepared by Helena, MT Branch

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: A2320 B									Batch	n: R72692
Sample ID: MBLK	Me	thod Blank				Run: MAN-	ΓΕCH_110714B		07/14	/11 17:13
Alkalinity, Total as CaCO3		ND	mg/L	2						
Sample ID: LCS-07012011	Lab	oratory Cont	trol Sample			Run: MAN-	ΓΕCH_110714B		07/14	/11 17:21
Alkalinity, Total as CaCO3		610	mg/L	4.0	101	90	110			
Sample ID: H11070194-001CDUP	Sar	mple Duplica	ite			Run: MAN-	ΓΕCH_110714B		07/14	/11 17:35
Alkalinity, Total as CaCO3		100	mg/L	4.0				0.4	20	
Sample ID: H11070194-005CMS	Sar	mple Matrix S	Spike			Run: MAN-	ΓΕCH_110714B		07/14	/11 18:10
Alkalinity, Total as CaCO3		180	mg/L	4.0	103	90	110			

Prepared by Helena, MT Branch

Analyte Cou	nt Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: A2540 D								Bat	ch: 12909
Sample ID: MB-12909	Method Blank				Run: ACCU	-124 (14410200)_110714	07/14	/11 11:06
Solids, Total Suspended TSS @ 105 C	ND	mg/L	3						
Sample ID: LCS-12909	Laboratory Cont	rol Sample			Run: ACCU	-124 (14410200))_110714	07/14	/11 11:07
Solids, Total Suspended TSS @ 105 C	1660	mg/L	10	83	70	130			
Sample ID: H11070194-002CDUP	Sample Duplica	te			Run: ACCU	-124 (14410200)_110714	07/14	/11 11:08
Solids, Total Suspended TSS @ 105 C	ND	mg/L	10					5	
Sample ID: H11070202-002BDUP	Sample Duplica	te			Run: ACCU	-124 (14410200))_110714	07/14	/11 12:53
Solids, Total Suspended TSS @ 105 C	122	mg/L	10				11	5	R

Prepared by Helena, MT Branch

Analyte	Count Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: D2036C								Batch:	: B_55539
Sample ID: B11071395-001EMSD	Sample Matrix S	Spike Duplicate			Run: SUB-E	3169257		07/20	/11 14:03
Cyanide, Weak Acid Dissociable	0.123	mg/L	0.0050	113	80	120	0.6	10	
Sample ID: LCS-55539	Laboratory Con	trol Sample			Run: SUB-E	3169257		07/20	/11 11:06
Cyanide, Weak Acid Dissociable	0.104	mg/L	0.0050	104	90	110			
Sample ID: MB-55539	Method Blank				Run: SUB-E	3169257		07/20	/11 11:08
Cyanide, Weak Acid Dissociable	ND	mg/L	0.002						
Sample ID: B11071395-001EMS	Sample Matrix	Spike			Run: SUB-E	3169257		07/20	/11 14:01
Cyanide, Weak Acid Dissociable	0.123	mg/L	0.0050	114	80	120			

Prepared by Helena, MT Branch

Client:Tetra Tech IncReport Date:07/25/11Project:Beal MtnWork Order:H11070204

Analyte	Coun	t Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E200.	8						Analytica	al Run: I	CPMS204-B	_110718 <i>A</i>
Sample ID: ICV S	TD 2	Initial Calibratio	n Verification	Standard					07/18	/11 10:57
Copper		0.0512	mg/L	0.010	102	90	110			
Selenium		0.0515	mg/L	0.0050	103	90	110			
Sample ID: ICSA	2	Interference Ch	neck Sample A	1					07/18	/11 11:02
Copper		0.000504	mg/L	0.010						
Selenium		0.000198	mg/L	0.0050						
Sample ID: ICSAE	2	Interference Ch	neck Sample A	ΛB					07/18	/11 11:07
Copper		0.0210	mg/L	0.010	105	70	130			
Selenium		0.0106	mg/L	0.0050	106	70	130			
Sample ID: ICV S	TD 2	Initial Calibration	n Verification	Standard					07/18	/11 15:53
Copper		0.0516	mg/L	0.010	103	90	110			
Selenium		0.0525	mg/L	0.0050	105	90	110			
Sample ID: ICSA	2	Interference Ch	neck Sample A	١					07/18	/11 15:57
Copper		0.000484	mg/L	0.010						
Selenium		0.000182	mg/L	0.0050						
Sample ID: ICSAE	2	Interference Ch	neck Sample A	λB					07/18	/11 16:02
Copper		0.0209	mg/L	0.010	105	70	130			
Selenium		0.0103	mg/L	0.0050	103	70	130			
Method: E200.	8								Batc	h: R72750
Sample ID: ICB	2	Method Blank				Run: ICPMS	S204-B_110718A		07/18	/11 12:56
Copper		ND	mg/L	3E-05						
Selenium		ND	mg/L	4E-05						
Sample ID: LFB	2	Laboratory Fort	ified Blank			Run: ICPMS	S204-B_110718A		07/18	/11 13:01
Copper		0.0467	mg/L	0.010	93	85	115			
Selenium		0.0478	mg/L	0.0050	96	85	115			
Sample ID: H1107	0204-002BMS 2	Sample Matrix	Spike			Run: ICPMS	S204-B_110718A		07/18	/11 22:11
Copper		0.0527	mg/L	0.010	91	70	130			
Selenium		0.0581	mg/L	0.0050	98	70	130			
Sample ID: H1107	0204-002BMSD 2	Sample Matrix	Spike Duplicat	te		Run: ICPMS	S204-B_110718A		07/18	/11 22:15
Copper		0.0540	mg/L	0.010	93	70	130	2.3	20	
Selenium		0.0586	mg/L	0.0050	99	70	130	8.0	20	

Qualifiers:

RL - Analyte reporting limit.

ND - Not detected at the reporting limit.

Prepared by Helena, MT Branch

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E300.0								Analytical R	lun: IC102-H	_110718A
Sample ID:	ICV071811-12	Initia	al Calibratio	n Verification St	andard					07/18	/11 17:38
Sulfate			420	mg/L	1.0	104	90	110			
Sample ID:	CCV071811-30	Con	tinuing Calil	oration Verificati	ion Standard					07/18	/11 21:18
Sulfate			410	mg/L	1.0	102	90	110			
Method:	E300.0									Batch	n: R72751
Sample ID:	ICB071811-13	Met	hod Blank				Run: IC102-	H_110718A		07/18	/11 17:49
Sulfate			ND	mg/L	0.02						
Sample ID:	LFB071811-14	Lab	oratory Forti	fied Blank			Run: IC102-	H_110718A		07/18	/11 18:01
Sulfate			190	mg/L	1.1	97	90	110			
Sample ID:	LFBD071811-14	Lab	oratory Forti	fied Blank			Run: IC102-	H_110718A		07/18	/11 18:12
Sulfate			190	mg/L	1.1	97	90	110			
Sample ID:	H11070194-003CMS	San	nple Matrix S	Spike			Run: IC102-	H_110718A		07/18	/11 22:28
Sulfate			210	mg/L	1.1	100	90	110			
Sample ID:	H11070194-003CMSI	D San	nple Matrix S	Spike Duplicate			Run: IC102-	H_110718A		07/18	/11 22:39
Sulfate			210	mg/L	1.1	101	90	110	1.1	20	

Prepared by Helena, MT Branch

Client:Tetra Tech IncReport Date:07/25/11Project:Beal MtnWork Order:H11070204

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E350.1							Analy	tical Run	: FIA203-HE	_110718C
Sample ID: ICV	Initia	al Calibration	n Verification Sta	ndard					07/18	/11 13:14
Nitrogen, Ammonia as N		1.06	mg/L	0.10	106	90	110			
Sample ID: ICB	Initia	al Calibration	n Blank, Instrume	ent Blank					07/18	/11 13:19
Nitrogen, Ammonia as N		-0.0174	mg/L	0.10		0	0			
Method: E350.1									Batcl	n: R72737
Sample ID: LCS	Labo	oratory Cont	rol Sample			Run: FIA203	B-HE_110718C		07/18	/11 13:15
Nitrogen, Ammonia as N		16.8	mg/L	0.50	107	0	0			S
Sample ID: LFB	Labo	oratory Forti	fied Blank			Run: FIA203	B-HE_110718C		07/18	/11 13:16
Nitrogen, Ammonia as N		0.966	mg/L	0.10	97	90	110			
Sample ID: MBLK	Meth	nod Blank				Run: FIA203	B-HE_110718C		07/18	/11 13:20
Nitrogen, Ammonia as N		ND	mg/L	0.002						
Sample ID: H11070204-002CMS	Sam	ıple Matrix S	Spike			Run: FIA203	B-HE_110718C		07/18	/11 13:57
Nitrogen, Ammonia as N		0.844	mg/L	0.10	86	80	120			
Sample ID: H11070204-002CMS	D Sam	ıple Matrix S	Spike Duplicate			Run: FIA203	B-HE_110718C		07/18	/11 13:58
Nitrogen, Ammonia as N		0.843	mg/L	0.10	86	80	120	0.2	10	

Qualifiers:

RL - Analyte reporting limit.

S - Spike recovery outside of advisory limits.

Prepared by Helena, MT Branch

Client:Tetra Tech IncReport Date:07/25/11Project:Beal MtnWork Order:H11070204

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E353.2							Analy	tical Rur	: FIA203-HE	_110715A
Sample ID: ICV	Initia	al Calibratio	n Verification S	tandard					07/15	/11 09:19
Nitrogen, Nitrate+Nitrite as N		1.03	mg/L	0.050	103	90	110			
Sample ID: ICB	Initia	al Calibratio	n Blank, Instrui	ment Blank					07/15	/11 09:25
Nitrogen, Nitrate+Nitrite as N		-0.00231	mg/L	0.050		0	0			
Sample ID: CCV	Con	tinuing Cali	bration Verifica	tion Standard					07/15	/11 10:01
Nitrogen, Nitrate+Nitrite as N		0.474	mg/L	0.050	95	90	110			
Sample ID: CCV	Con	tinuing Cali	bration Verifica	tion Standard					07/15	/11 10:34
Nitrogen, Nitrate+Nitrite as N		0.476	mg/L	0.050	95	90	110			
Method: E353.2									Batch	n: R72699
Sample ID: LCS	Labo	oratory Con	trol Sample			Run: FIA20	3-HE_110715A		07/15	/11 09:20
Nitrogen, Nitrate+Nitrite as N		25.5	mg/L	0.20	105	90	110			
Sample ID: LFB	Labo	oratory Fort	ified Blank			Run: FIA20	B-HE_110715A		07/15	/11 09:22
Nitrogen, Nitrate+Nitrite as N		0.980	mg/L	0.050	98	90	110			
Sample ID: MBLK	Metl	nod Blank				Run: FIA20	B-HE_110715A		07/15	/11 09:26
Nitrogen, Nitrate+Nitrite as N		ND	mg/L	0.0009						
Sample ID: H11070203-003BMS	Sam	ple Matrix S	Spike			Run: FIA20	3-HE_110715A		07/15	/11 10:06
Nitrogen, Nitrate+Nitrite as N		0.905	mg/L	0.050	91	90	110			
Sample ID: H11070203-003BMSE	Sam	ple Matrix S	Spike Duplicate)		Run: FIA20	3-HE_110715A		07/15	/11 10:07
Nitrogen, Nitrate+Nitrite as N		0.923	mg/L	0.050	92	90	110	1.9	20	
Sample ID: H11070211-007DMS	Sam	nple Matrix S	Spike			Run: FIA20	3-HE_110715A		07/15	/11 10:37
Nitrogen, Nitrate+Nitrite as N		0.914	mg/L	0.050	89	90	110			S
Sample ID: H11070211-007DMSE) Sam	nple Matrix S	Spike Duplicate)		Run: FIA20	3-HE_110715A		07/15	/11 10:38
Nitrogen, Nitrate+Nitrite as N		0.905	mg/L	0.050	89	90	110	0.9	20	S

Qualifiers:

RL - Analyte reporting limit.

S - Spike recovery outside of advisory limits.

Prepared by Helena, MT Branch

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: Kelada mod								Analyti	cal Run: SUB	-B169179
Sample ID: ICV-1	Initial	Calibration	n Verification Sta	ndard					07/19	/11 13:32
Cyanide, Total		0.162	mg/L	0.0050	108	90	110			
Method: Kelada mod									Batch	B_55510
Sample ID: LCS-55510	Labor	atory Cont	trol Sample			Run: SUB-E	3169179		07/19	/11 13:39
Cyanide, Total		0.0947	mg/L	0.0050	95	90	110			
Sample ID: MB-55510	Metho	od Blank				Run: SUB-E	3169179		07/19	/11 13:41
Cyanide, Total		ND	mg/L	0.002						
Sample ID: B11071121-004DMS	Samp	ole Matrix S	Spike			Run: SUB-E	3169179		07/19	/11 13:45
Cyanide, Total		0.119	mg/L	0.0050	116	90	110			S
Sample ID: B11071121-004DMSD	S amp	ole Matrix S	Spike Duplicate			Run: SUB-E	3169179		07/19	/11 13:47
Cyanide, Total		0.112	mg/L	0.0050	109	90	110	6.0	10	

Workorder Receipt Checklist

H11070204

Tetra Tech Inc

Login completed by: Tracy L. Lorash Date Received: 7/14/2011 Reviewed by: Received by: TLL BL2000\sdull Reviewed Date: 7/15/2011 Carrier Hand Del name: Shipping container/cooler in good condition? Not Present Yes ✓ No \square Custody seals intact on shipping container/cooler? Yes No 🗌 Not Present ✓ Custody seals intact on sample bottles? Yes No 🗌 Not Present ✓ Chain of custody present? Yes ✓ No 🗌 Chain of custody signed when relinquished and received? No 🔲 Yes ✓ Chain of custody agrees with sample labels? Yes √ No 🗌 Samples in proper container/bottle? Yes ✓ No 🔲 Sample containers intact? Yes ✓ No 🗌 Sufficient sample volume for indicated test? Yes √ No 🗌 All samples received within holding time? Yes √ No 🗌 Container/Temp Blank temperature: 4.3℃ Water - VOA vials have zero headspace? Yes No 🔲 No VOA vials submitted $\sqrt{}$ Water - pH acceptable upon receipt? Not Applicable Yes √ No 🗌

Contact and Corrective Action Comments:

None

,	_
GY	
ER	

PLEASE PRINT (Provide as much information as possible,) Chain of Custody and Analytical Request Record

Company Name:	me:			Project Name, PWS, Permit, Etc.	e PW	S, Permit, E	tc.			Sample	Sample Origin	EDA/O	EDA/Ototo Complian
Totor	Fech			Roal	Ź	Mountain		かって			State:	i >	ate compliance.
3/17/				8	٦.	מתה	`	1				xes	□ %
Report Mail Address:	Address:	4		Contact Name:	me:		Phone/Fax:		•	,	Email:	Sample	Sampler: (Please Print)
۱,	7.7	59601		443-	5210		18	James. Ma	45 B	121	mans@tetra Tech.com	1,7	Mans
Invoice Address:				Invoice Contact & Phone	lact & F	hone:				-	Purchase Order:	Onote/	14.
Same	•)			Same	Ì								100
Special Rep	Special Report/Formats:			M	1 -	ALYSIE		ANALYSIS REQUESTED		╫	Contact ELI prior to	or to	Shipped by:
MO] EDD/EDT (Electronic Data)		ontainers / S V B O D Is/Solids Issay <u>O</u> ther I Water	1	D-17/17				(TAT) b	RUSH sample submittal for charges and scheduling – See Instruction Page	submittal	Cooler ID(s):
□ POTW/WWTP □ State:	WWTP	Format:		ec Of Co ec: A V on Bios on Bios orinking	00,0	רייברוף				aroun	J Comments:		Receipt Temp
Other:		NELAC		odmuM qyT əlqn Air <u>Wa</u> isyetatio Dy - D	chew	22/2			ТА Э		Sae Attached	ched	On ice: Y (N)
				ns2 <u>V</u>	5,0	rob.					Table	<i>></i>	On Cooler Y
SAMPLE I (Name, Loc	SAMPLE IDENTIFICATION (Name, Location, Interval, etc.)	Collection Date	Collection Time	MATRIX	KYd	ron Tuon Tub							Intact Y N Signature Y N
BCD		7-13-11	1505	4 12	8	X			-				#11670pv4
2BCD-	Barren	11-13-11	SHHI	4 6	8 X	スカ							
e										-			
4 "													
n (4													
2													<u> </u>
. 00												<u> </u>	// (-/ /
· •					\dashv		-						<u>u</u>
01										+		e v	EN
Custody	Relinquished by (print):		ne:	Signature:	-Je:		Receive	Received by (print):		Date/Time		l said	77
Record	Helinoulished by (print)	1/4/1/ 210 Ting	1109	d			o o o o	Occupation of the Company		i d		O'GLIBRUIA	•
MUST be					į		Vacai	d by (pink).	İ	Date/Ime	Ime:	Signature:	
Signed	Sample Disposal:	Return to Client:		Lab Disposal:	.		Receive	VCC.	Jozza	Date/Time	7//4/// 11:09	Sale Co	2000
	1							ł			1	•	くること

In certain circumstances, samples submitted to Energy Laboratories, Inc. may be subcontracted to other defitied laboratories in order to complete the analysis requested.

This serves as notice of this possibility. All sub-contract data will be clearly notated on your analytical report.

Visit our web site at www.energylab.com for additional information, downloadable fee schedule, forms, and links.

Beal 2011 Site Wide Monitoring Analytic Summary:

Surface Water 23 samples X 2 events For Table 4

SURFACE WATER A	TABL AND SPRING	E 4 ANALYTICAL REQUI	REMENTS
Parameter	MDL (mg/L) ⁽¹⁾	Method No.	Max. Holding Time
	Physicoch	nemical	<u>-</u>
Total Suspended Solids	5.0	E160.2	7 Days
Alkalinity, total ³	4.0	A2320B	14 Days
	Metal	s ⁽²⁾	
Copper	0.001	E200.8	6 Months
Selenium	0.001	E200.8	6 Months
	Inorgai	nics	
Cyanide, free	0.2	SM4500 CN F	14 Days
Cyanide, total	0.005	SM4500 CN / 335.4	14 Days
Cyanide, weak acid dissociable (WAD)	0.005	SM 4500	14 Days
	Nutrie	nts	
Ammonia (low level)	0.1	SM4500 NH3	28 Days
Nitrogen, Nitrate+Nitrite as N	0.05	E353.2	28 Days
Sulfate ³	1.0	E300.0	28 Days

MDL = Method Detection Limit in milligrams per liter (mg/L)
Surface water and spring parameters will be analyzed for total recoverable metals.
Alkalinity and Sulfate to be analyzed only at locations SPR-5, SPR-10A, Toe Drain, and MB-Drain.

ANALYTICAL SUMMARY REPORT

September 29, 2011

Tetra Tech Inc 303 Irene St Helena, MT 59601

Workorder No.: H11090277 Quote ID: H634 - Beal 2011 Site Wide Monitoring

Project Name: Beal Mtn Mine

Energy Laboratories Inc Helena MT received the following 21 samples for Tetra Tech Inc on 9/16/2011 for analysis.

Sample ID	Client Sample ID	Collect Date Receive Date	e Matrix	Test
H11090277-001	STA-1	09/12/11 11:30 09/16/11	Aqueous	Metals by ICP/ICPMS, Tot. Rec. Alkalinity Cyanide, Free Cyanide, Total Manual Distillation Total Cyanide Digestion Cyanide, Weak Acid Dissociable WAD Cyanide Distillation Conductivity Anions by Ion Chromatography Nitrogen, Ammonia Nitrogen, Nitrate + Nitrite Metals Digestion by EPA 200.2 Preparation for TSS Solids, Total Suspended
H11090277-002	BS-D	09/12/11 12:45 09/16/11	Aqueous	Same As Above
H11090277-003	STA-2	09/12/11 14:00 09/16/11	Aqueous	Same As Above
H11090277-004	STA-3A	09/12/11 14:45 09/16/11	Aqueous	Same As Above
H11090277-005	SPR-T	09/12/11 15:45 09/16/11	Aqueous	Same As Above
H11090277-006	SPR-3	09/12/11 16:30 09/16/11	Aqueous	Same As Above
H11090277-007	SPR-D4	09/12/11 17:10 09/16/11	Aqueous	Same As Above
H11090277-008	MINN-DN	09/12/11 17:50 09/16/11	Aqueous	Same As Above
H11090277-009	SPR-10A	09/15/11 9:50 09/16/11	Aqueous	Same As Above
H11090277-010	DUP-1	09/12/11 6:00 09/16/11	Aqueous	Same As Above
H11090277-011	STA-4	09/14/11 9:15 09/16/11	Aqueous	Same As Above
H11090277-012	MB-Drain	09/14/11 10:05 09/16/11	Aqueous	Same As Above
H11090277-013	BCD-Barren	09/14/11 10:35 09/16/11	Aqueous	Same As Above
H11090277-014	BCD	09/14/11 11:05 09/16/11	Aqueous	Same As Above
H11090277-015	SPR-18	09/14/11 12:20 09/16/11	Aqueous	Same As Above
H11090277-016	SPR-D2	09/14/11 13:00 09/16/11	Aqueous	Same As Above
H11090277-017	SPR-2	09/14/11 13:45 09/16/11	Aqueous	Same As Above
H11090277-018	BCD-A	09/14/11 14:00 09/16/11	Aqueous	Same As Above
H11090277-019	SPR-19	09/14/11 14:50 09/16/11	Aqueous	Same As Above
H11090277-020	SPR-5	09/15/11 9:35 09/16/11	Aqueous	Same As Above
H11090277-021	SPR-Roadfill	09/12/11 16:00 09/16/11	Aqueous	Same As Above

ANALYTICAL SUMMARY REPORT

The analyses presented in this report were performed by Energy Laboratories, Inc., 3161 E. Lyndale Ave., Helena, MT 59604, unless otherwise reported.

Any exceptions or problems with the analyses are noted in the Laboratory Analytical Report, the QA/QC Summary Report, or the Case Narrative.

The results as reported relate only to the item(s) submitted for testing.

If you have any questions regarding these test results, please call.

Report Approved By:

CLIENT: Tetra Tech Inc Project: Beal Mtn Mine

Sample Delivery Group: H11090277

Report Date: 09/29/11 **CASE NARRATIVE**

Tests associated with analyst identified as ELI-B were subcontracted to Energy Laboratories, 1120 S. 27th St., Billings, MT, EPA Number MT00005.

Prepared by Helena, MT Branch

 Client:
 Tetra Tech Inc
 Report Date:
 09/29/11

 Project:
 Beal Mtn Mine
 Collection Date:
 09/12/11 11:30

 Lab ID:
 H11090277-001
 DateReceived:
 09/16/11

 Client Sample ID
 STA-1
 Matrix:
 Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL PROPERTIES							
Solids, Total Suspended TSS @ 105 C	ND	mg/L		5		A2540 D	09/19/11 12:11 / cmm
INORGANICS							
Cyanide, Total	ND	mg/L		0.005		Kelada mod	09/23/11 12:18 / eli-b1
Alkalinity, Total as CaCO3	120	mg/L		4		A2320 B	09/20/11 03:56 / zeg
Sulfate	22	mg/L		1		E300.0	09/22/11 22:56 / zeg
Cyanide, Free	ND	mg/L		0.20		A4500-CN-F	09/26/11 09:30 / eli-b
Cyanide, Weak Acid Dissociable	NA	mg/L		0.005		D2036C	09/23/11 17:00 / eli-b1
- The Total Cyanide was analyzed, and was less th	an the repo	rting limit for \	Weak Acid Dissociat	ole (WAD)	Cyanide. \	WAD Cyanide was	s not analyzed.
NUTRIENTS							
Nitrogen, Nitrate+Nitrite as N	ND	mg/L		0.05		E353.2	09/20/11 09:46 / reh
Nitrogen, Ammonia as N	ND	mg/L		0.1		E350.1	09/22/11 16:26 / reh
METALS, TOTAL RECOVERABLE							
Copper	ND	mg/L		0.001		E200.8	09/20/11 20:07 / dck
Selenium	ND	mg/L		0.001		E200.8	09/20/11 20:07 / dck

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

Prepared by Helena, MT Branch

 Client:
 Tetra Tech Inc
 Report Date:
 09/29/11

 Project:
 Beal Mtn Mine
 Collection Date:
 09/12/11 12:45

 Lab ID:
 H11090277-002
 DateReceived:
 09/16/11

 Client Sample ID
 BS-D
 Matrix:
 Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL PROPERTIES							
Solids, Total Suspended TSS @ 105 C	ND	mg/L		5		A2540 D	09/19/11 12:11 / cmm
INORGANICS							
Cyanide, Total	ND	mg/L		0.005		Kelada mod	09/26/11 12:02 / eli-b
Alkalinity, Total as CaCO3	150	mg/L		4		A2320 B	09/20/11 04:04 / zeg
Sulfate	6	mg/L		1		E300.0	09/22/11 23:37 / zeg
Cyanide, Free	ND	mg/L		0.20		A4500-CN-F	09/26/11 09:30 / eli-b
Cyanide, Weak Acid Dissociable	NA	mg/L		0.005		D2036C	09/26/11 15:15 / eli-b
- The Total Cyanide was analyzed, and was less	than the repo	ting limit for \	Weak Acid Dissociat	ole (WAD)	Cyanide. \	WAD Cyanide was	s not analyzed.
NUTRIENTS							
Nitrogen, Nitrate+Nitrite as N	ND	mg/L		0.05		E353.2	09/20/11 09:48 / reh
Nitrogen, Ammonia as N	ND	mg/L		0.1		E350.1	09/22/11 16:27 / reh
METALS, TOTAL RECOVERABLE							
Copper	ND	mg/L		0.001		E200.8	09/20/11 20:11 / dck
Selenium	ND	mg/L		0.001		E200.8	09/20/11 20:11 / dck

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

Prepared by Helena, MT Branch

 Client:
 Tetra Tech Inc
 Report Date:
 09/29/11

 Project:
 Beal Mtn Mine
 Collection Date:
 09/12/11 14:00

 Lab ID:
 H11090277-003
 DateReceived:
 09/16/11

 Client Sample ID
 STA-2
 Matrix:
 Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL PROPERTIES							
Solids, Total Suspended TSS @ 105 C	ND	mg/L		5		A2540 D	09/19/11 12:12 / cmm
INORGANICS							
Cyanide, Total	ND	mg/L		0.005		Kelada mod	09/23/11 12:24 / eli-b1
Alkalinity, Total as CaCO3	63	mg/L		4		A2320 B	09/20/11 04:11 / zeg
Sulfate	93	mg/L		1		E300.0	09/22/11 23:51 / zeg
Cyanide, Free	ND	mg/L		0.20		A4500-CN-F	09/26/11 09:30 / eli-b
Cyanide, Weak Acid Dissociable	NA	mg/L		0.005		D2036C	09/23/11 17:00 / eli-b1
- The Total Cyanide was analyzed, and was less t	than the repo	rting limit for \	Weak Acid Dissociab	ole (WAD)	Cyanide. \	WAD Cyanide was	not analyzed.
NUTRIENTS							
Nitrogen, Nitrate+Nitrite as N	0.25	mg/L		0.05		E353.2	09/20/11 09:49 / reh
Nitrogen, Ammonia as N	ND	mg/L		0.1		E350.1	09/22/11 16:28 / reh
METALS, TOTAL RECOVERABLE							
Copper	0.001	mg/L		0.001		E200.8	09/20/11 20:16 / dck
Selenium	0.003	mg/L		0.001		E200.8	09/20/11 20:16 / dck

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

Prepared by Helena, MT Branch

 Client:
 Tetra Tech Inc
 Report Date:
 09/29/11

 Project:
 Beal Mtn Mine
 Collection Date:
 09/12/11 14:45

 Lab ID:
 H11090277-004
 DateReceived:
 09/16/11

 Client Sample ID
 STA-3A
 Matrix:
 Aqueous

MCL/ **Analyses** Result QCL Method Analysis Date / By Units Qualifiers RL **PHYSICAL PROPERTIES** Solids, Total Suspended TSS @ 105 C ND 5 A2540 D mg/L 09/19/11 12:12 / cmm **INORGANICS** 0.005 Cyanide, Total ND mg/L Kelada mod 09/26/11 12:10 / eli-b A2320 B Alkalinity, Total as CaCO3 72 mg/L 09/20/11 04:25 / zeg 4 Sulfate 190 mg/L 1 E300.0 09/23/11 00:04 / zeg ND 0.20 A4500-CN-F 09/26/11 09:30 / eli-b Cyanide, Free mg/L mg/L Cyanide, Weak Acid Dissociable NA 0.005 D2036C 09/26/11 15:15 / eli-b - The Total Cyanide was analyzed, and was less than the reporting limit for Weak Acid Dissociable (WAD) Cyanide. WAD Cyanide was not analyzed. **NUTRIENTS** 0.05 E353.2 Nitrogen, Nitrate+Nitrite as N 1.89 mg/L 09/20/11 09:50 / reh ND Nitrogen, Ammonia as N mg/L 0.1 E350.1 09/22/11 16:30 / reh **METALS, TOTAL RECOVERABLE** Copper 0.002 0.001 E200.8 09/20/11 20:38 / dck mg/L Selenium 0.005 0.001 E200.8 09/20/11 20:38 / dck mg/L

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

Prepared by Helena, MT Branch

Client: Tetra Tech Inc **Report Date:** 09/29/11 Project: Beal Mtn Mine **Collection Date:** 09/12/11 15:45 Lab ID: H11090277-005 DateReceived: 09/16/11 Client Sample ID SPR-T

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL PROPERTIES							
Solids, Total Suspended TSS @ 105 C	ND	mg/L		5		A2540 D	09/19/11 12:12 / cmm
INORGANICS							
Cyanide, Total	0.010	mg/L		0.005		Kelada mod	09/26/11 12:11 / eli-b
Alkalinity, Total as CaCO3	83	mg/L		4		A2320 B	09/20/11 04:32 / zeg
Sulfate	300	mg/L		1		E300.0	09/23/11 00:18 / zeg
Cyanide, Free	ND	mg/L		0.20		A4500-CN-F	09/26/11 09:30 / eli-b
Cyanide, Weak Acid Dissociable	ND	mg/L		0.005		D2036C	09/26/11 14:54 / eli-b
NUTRIENTS							
Nitrogen, Nitrate+Nitrite as N	1.05	mg/L		0.05		E353.2	09/20/11 09:51 / reh
Nitrogen, Ammonia as N	ND	mg/L		0.1		E350.1	09/22/11 16:36 / reh
METALS, TOTAL RECOVERABLE							
Copper	ND	mg/L		0.001		E200.8	09/20/11 20:43 / dck
Selenium	0.011	mg/L		0.001		E200.8	09/20/11 20:43 / dck

Report RL - Analyte reporting limit. Definitions: QCL - Quality control limit.

Prepared by Helena, MT Branch

 Client:
 Tetra Tech Inc
 Report Date:
 09/29/11

 Project:
 Beal Mtn Mine
 Collection Date:
 09/12/11 16:30

 Lab ID:
 H11090277-006
 DateReceived:
 09/16/11

 Client Sample ID
 SPR-3
 Matrix:
 Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL PROPERTIES							
Solids, Total Suspended TSS @ 105 C	ND	mg/L		5		A2540 D	09/19/11 12:13 / cmm
INORGANICS							
Cyanide, Total	ND	mg/L		0.005		Kelada mod	09/26/11 12:13 / eli-b
Alkalinity, Total as CaCO3	35	mg/L		4		A2320 B	09/20/11 04:39 / zeg
Sulfate	46	mg/L		1		E300.0	09/23/11 00:32 / zeg
Cyanide, Free	ND	mg/L		0.20		A4500-CN-F	09/26/11 09:30 / eli-b
Cyanide, Weak Acid Dissociable	NA	mg/L		0.005		D2036C	09/26/11 15:15 / eli-b
- The Total Cyanide was analyzed, and was less	than the repo	rting limit for V	Veak Acid Dissociat	ole (WAD)	Cyanide. \	WAD Cyanide was	not analyzed.
NUTRIENTS							
Nitrogen, Nitrate+Nitrite as N	4.96	mg/L		0.05		E353.2	09/20/11 10:12 / reh
Nitrogen, Ammonia as N	ND	mg/L		0.1		E350.1	09/22/11 16:37 / reh
METALS, TOTAL RECOVERABLE							
Copper	0.002	mg/L		0.001		E200.8	09/20/11 20:47 / dck
Selenium	0.002	mg/L		0.001		E200.8	09/20/11 20:47 / dck

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

Prepared by Helena, MT Branch

 Client:
 Tetra Tech Inc
 Report Date:
 09/29/11

 Project:
 Beal Mtn Mine
 Collection Date:
 09/12/11 17:10

 Lab ID:
 H11090277-007
 DateReceived:
 09/16/11

 Client Sample ID
 SPR-D4
 Matrix:
 Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL PROPERTIES							
Solids, Total Suspended TSS @ 105 C	ND	mg/L		5		A2540 D	09/19/11 12:13 / cmm
INORGANICS							
Cyanide, Total	0.015	mg/L		0.005		Kelada mod	09/26/11 12:15 / eli-b
Alkalinity, Total as CaCO3	57	mg/L		4		A2320 B	09/20/11 04:45 / zeg
Sulfate	330	mg/L		1		E300.0	09/23/11 01:12 / zeg
Cyanide, Free	ND	mg/L		0.20		A4500-CN-F	09/26/11 09:30 / eli-b
Cyanide, Weak Acid Dissociable	0.005	mg/L		0.005		D2036C	09/26/11 14:56 / eli-b
NUTRIENTS							
Nitrogen, Nitrate+Nitrite as N	0.35	mg/L		0.05		E353.2	09/20/11 09:57 / reh
Nitrogen, Ammonia as N	ND	mg/L		0.1		E350.1	09/22/11 16:40 / reh
METALS, TOTAL RECOVERABLE							
Copper	ND	mg/L		0.001		E200.8	09/20/11 20:51 / dck
Selenium	0.006	mg/L		0.001		E200.8	09/20/11 20:51 / dck

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

Prepared by Helena, MT Branch

 Client:
 Tetra Tech Inc
 Report Date:
 09/29/11

 Project:
 Beal Mtn Mine
 Collection Date:
 09/12/11 17:50

 Lab ID:
 H11090277-008
 DateReceived:
 09/16/11

 Client Sample ID
 MINN-DN
 Matrix:
 Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL PROPERTIES							
Solids, Total Suspended TSS @ 105 C	ND	mg/L		5		A2540 D	09/19/11 12:13 / cmm
INORGANICS							
Cyanide, Total	ND	mg/L		0.005		Kelada mod	09/26/11 12:17 / eli-b
Alkalinity, Total as CaCO3	190	mg/L		4		A2320 B	09/20/11 18:25 / cmm
Sulfate	5	mg/L		1		E300.0	09/23/11 01:26 / zeg
Cyanide, Free	ND	mg/L		0.20		A4500-CN-F	09/26/11 09:30 / eli-b
Cyanide, Weak Acid Dissociable	NA	mg/L		0.005		D2036C	09/26/11 15:15 / eli-b
- The Total Cyanide was analyzed, and was less t	than the repo	rting limit for \	Weak Acid Dissociab	le (WAD)	Cyanide. \	WAD Cyanide was	not analyzed.
NUTRIENTS							
Nitrogen, Nitrate+Nitrite as N	ND	mg/L		0.05		E353.2	09/20/11 10:01 / reh
Nitrogen, Ammonia as N	ND	mg/L		0.1		E350.1	09/22/11 16:42 / reh
METALS, TOTAL RECOVERABLE							
Copper	ND	mg/L		0.001		E200.8	09/20/11 20:56 / dck
Selenium	ND	mg/L		0.001		E200.8	09/20/11 20:56 / dck

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

Prepared by Helena, MT Branch

 Client:
 Tetra Tech Inc
 Report Date:
 09/29/11

 Project:
 Beal Mtn Mine
 Collection Date:
 09/15/11 09:50

 Lab ID:
 H11090277-009
 DateReceived:
 09/16/11

 Client Sample ID
 SPR-10A
 Matrix:
 Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL PROPERTIES							
Solids, Total Suspended TSS @ 105 C	ND	mg/L		5		A2540 D	09/19/11 12:14 / cmm
INORGANICS							
Cyanide, Total	ND	mg/L		0.005		Kelada mod	09/23/11 12:32 / eli-b1
Alkalinity, Total as CaCO3	140	mg/L		4		A2320 B	09/20/11 18:41 / cmm
Sulfate	390	mg/L		1		E300.0	09/23/11 01:40 / zeg
Cyanide, Free	ND	mg/L		0.20		A4500-CN-F	09/26/11 09:30 / eli-b
Cyanide, Weak Acid Dissociable	NA	mg/L		0.005		D2036C	09/23/11 17:00 / eli-b1
- The Total Cyanide was analyzed, and was less t	han the repo	rting limit for V	Veak Acid Dissociab	ole (WAD)	Cyanide. \	WAD Cyanide was	not analyzed.
NUTRIENTS							
Nitrogen, Nitrate+Nitrite as N	0.81	mg/L		0.05		E353.2	09/20/11 10:02 / reh
Nitrogen, Ammonia as N	ND	mg/L		0.1		E350.1	09/22/11 16:43 / reh
METALS, TOTAL RECOVERABLE							
Copper	0.001	mg/L		0.001		E200.8	09/20/11 21:13 / dck
Selenium	0.074	mg/L		0.001		E200.8	09/20/11 21:13 / dck

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

Prepared by Helena, MT Branch

 Client:
 Tetra Tech Inc
 Report Date:
 09/29/11

 Project:
 Beal Mtn Mine
 Collection Date:
 09/12/11 06:00

 Lab ID:
 H11090277-010
 DateReceived:
 09/16/11

 Client Sample ID
 DUP-1
 Matrix:
 Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL PROPERTIES							
Solids, Total Suspended TSS @ 105 C	ND	mg/L		5		A2540 D	09/19/11 12:14 / cmm
INORGANICS							
Cyanide, Total	ND	mg/L		0.005		Kelada mod	09/26/11 12:24 / eli-b
Alkalinity, Total as CaCO3	72	mg/L		4		A2320 B	09/20/11 18:48 / cmm
Sulfate	190	mg/L		1		E300.0	09/23/11 01:53 / zeg
Cyanide, Free	ND	mg/L		0.20		A4500-CN-F	09/26/11 09:30 / eli-b
Cyanide, Weak Acid Dissociable	NA	mg/L		0.005		D2036C	09/26/11 15:15 / eli-b
- The Total Cyanide was analyzed, and was less	than the repo	rting limit for \	Weak Acid Dissociat	ole (WAD)	Cyanide. \	WAD Cyanide was	s not analyzed.
NUTRIENTS							
Nitrogen, Nitrate+Nitrite as N	1.89	mg/L		0.05		E353.2	09/20/11 10:03 / reh
Nitrogen, Ammonia as N	ND	mg/L		0.1		E350.1	09/22/11 16:44 / reh
METALS, TOTAL RECOVERABLE							
Copper	0.002	mg/L		0.001		E200.8	09/20/11 21:36 / dck
Selenium	0.005	mg/L		0.001		E200.8	09/20/11 21:36 / dck

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

Prepared by Helena, MT Branch

 Client:
 Tetra Tech Inc
 Report Date:
 09/29/11

 Project:
 Beal Mtn Mine
 Collection Date:
 09/14/11 09:15

 Lab ID:
 H11090277-011
 DateReceived:
 09/16/11

 Client Sample ID
 STA-4
 Matrix:
 Aqueous

Analona	D lt				MCL/	NA - Alb - al	Ameliania Data / Da
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By
PHYSICAL PROPERTIES							
Solids, Total Suspended TSS @ 105 C	ND	mg/L		5		A2540 D	09/19/11 12:15 / cmm
INORGANICS							
Cyanide, Total	ND	mg/L		0.005		Kelada mod	09/23/11 12:48 / eli-b1
Alkalinity, Total as CaCO3	47	mg/L		4		A2320 B	09/20/11 18:55 / cmm
Sulfate	41	mg/L		1		E300.0	09/23/11 02:34 / zeg
Cyanide, Free	ND	mg/L		0.20		A4500-CN-F	09/26/11 09:30 / eli-b
Cyanide, Weak Acid Dissociable	NA	mg/L		0.005		D2036C	09/23/11 17:00 / eli-b1
- The Total Cyanide was analyzed, and was less	than the repo	rting limit for V	Veak Acid Dissocial	ble (WAD)	Cyanide. \	WAD Cyanide was	s not analyzed.
NUTRIENTS							
Nitrogen, Nitrate+Nitrite as N	ND	mg/L		0.05		E353.2	09/20/11 10:04 / reh
Nitrogen, Ammonia as N	ND	mg/L		0.1		E350.1	09/22/11 16:45 / reh
METALS, TOTAL RECOVERABLE							
Copper	ND	mg/L		0.001		E200.8	09/20/11 21:40 / dck
Selenium	0.001	mg/L		0.001		E200.8	09/20/11 21:40 / dck

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

Prepared by Helena, MT Branch

 Client:
 Tetra Tech Inc
 Report Date:
 09/29/11

 Project:
 Beal Mtn Mine
 Collection Date:
 09/14/11 10:05

 Lab ID:
 H11090277-012
 DateReceived:
 09/16/11

 Client Sample ID
 MB-Drain
 Matrix:
 Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL PROPERTIES							
Solids, Total Suspended TSS @ 105 C	ND	mg/L		5		A2540 D	09/19/11 12:15 / cmm
INORGANICS							
Cyanide, Total	ND	mg/L		0.005		Kelada mod	09/23/11 12:56 / eli-b1
Alkalinity, Total as CaCO3	120	mg/L		4		A2320 B	09/20/11 19:01 / cmm
Sulfate	740	mg/L	D	2		E300.0	09/23/11 02:48 / zeg
Cyanide, Free	ND	mg/L		0.20		A4500-CN-F	09/26/11 09:30 / eli-b
Cyanide, Weak Acid Dissociable	NA	mg/L		0.005		D2036C	09/23/11 17:00 / eli-b1
- The Total Cyanide was analyzed, and was less the	nan the repo	rting limit for	Weak Acid Dissociat	ole (WAD)	Cyanide.	WAD Cyanide was	not analyzed.
NUTRIENTS							
Nitrogen, Nitrate+Nitrite as N	0.16	mg/L		0.05		E353.2	09/20/11 10:06 / reh
Nitrogen, Ammonia as N	ND	mg/L		0.1		E350.1	09/22/11 16:46 / reh
METALS, TOTAL RECOVERABLE							
Copper	ND	mg/L		0.001		E200.8	09/20/11 21:45 / dck
Selenium	0.015	mg/L		0.001		E200.8	09/20/11 21:45 / dck

Report RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

 $\ensuremath{\mathsf{D}}$ - $\ensuremath{\mathsf{RL}}$ increased due to sample matrix.

Prepared by Helena, MT Branch

 Client:
 Tetra Tech Inc
 Report Date:
 09/29/11

 Project:
 Beal Mtn Mine
 Collection Date:
 09/14/11 10:35

 Lab ID:
 H11090277-013
 DateReceived:
 09/16/11

 Client Sample ID
 BCD-Barren
 Matrix:
 Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL PROPERTIES							
Solids, Total Suspended TSS @ 105 C	ND	mg/L		5		A2540 D	09/19/11 12:25 / cmm
INORGANICS							
Cyanide, Total	0.33	mg/L	D	0.01		Kelada mod	09/26/11 14:03 / eli-b
Alkalinity, Total as CaCO3	110	mg/L		4		A2320 B	09/20/11 19:09 / cmm
Sulfate	200	mg/L		1		E300.0	09/23/11 03:01 / zeg
Cyanide, Free	ND	mg/L		0.20		A4500-CN-F	09/26/11 09:30 / eli-b
Cyanide, Weak Acid Dissociable	0.061	mg/L		0.005		D2036C	09/26/11 14:41 / eli-b
NUTRIENTS							
Nitrogen, Nitrate+Nitrite as N	6.38	mg/L		0.05		E353.2	09/20/11 10:13 / reh
Nitrogen, Ammonia as N	ND	mg/L		0.1		E350.1	09/22/11 16:47 / reh
METALS, TOTAL RECOVERABLE							
Copper	0.021	mg/L		0.001		E200.8	09/20/11 21:49 / dck
Selenium	0.023	mg/L		0.001		E200.8	09/20/11 21:49 / dck

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

 $\ensuremath{\mathsf{D}}$ - $\ensuremath{\mathsf{RL}}$ increased due to sample matrix.

Prepared by Helena, MT Branch

 Client:
 Tetra Tech Inc
 Report Date:
 09/29/11

 Project:
 Beal Mtn Mine
 Collection Date:
 09/14/11 11:05

 Lab ID:
 H11090277-014
 DateReceived:
 09/16/11

 Client Sample ID
 BCD
 Matrix:
 Aqueous

Analyses	Result		0 1111		MCL/ QCL	Method	Analysis Data / By
Analyses	nesuit	Units	Qualifiers	RL	QCL	wethod	Analysis Date / By
PHYSICAL PROPERTIES							
Solids, Total Suspended TSS @ 105 C	44	mg/L		5		A2540 D	09/19/11 12:25 / cmm
INORGANICS							
Cyanide, Total	ND	mg/L		0.005		Kelada mod	09/26/11 12:28 / eli-b
Alkalinity, Total as CaCO3	170	mg/L		4		A2320 B	09/20/11 19:16 / cmm
Sulfate	1400	mg/L	D	5		E300.0	09/23/11 03:15 / zeg
Cyanide, Free	ND	mg/L		0.20		A4500-CN-F	09/26/11 09:30 / eli-b
Cyanide, Weak Acid Dissociable	NA	mg/L		0.005		D2036C	09/26/11 15:15 / eli-b
- The Total Cyanide was analyzed, and was less	than the repo	rting limit for V	Veak Acid Dissocia	ble (WAD)	Cyanide.	WAD Cyanide was	s not analyzed.
NUTRIENTS							
Nitrogen, Nitrate+Nitrite as N	15.6	mg/L	D	0.1		E353.2	09/26/11 12:38 / reh
Nitrogen, Ammonia as N	ND	mg/L		0.1		E350.1	09/22/11 16:49 / reh
METALS, TOTAL RECOVERABLE							
Copper	0.019	mg/L		0.001		E200.8	09/20/11 21:53 / dck
Selenium	0.090	mg/L		0.001		E200.8	09/20/11 21:53 / dck

Report RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

 $\ensuremath{\mathsf{D}}$ - $\ensuremath{\mathsf{RL}}$ increased due to sample matrix.

Prepared by Helena, MT Branch

 Client:
 Tetra Tech Inc
 Report Date:
 09/29/11

 Project:
 Beal Mtn Mine
 Collection Date:
 09/14/11 12:20

 Lab ID:
 H11090277-015
 DateReceived:
 09/16/11

 Client Sample ID
 SPR-18
 Matrix:
 Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL PROPERTIES							
Solids, Total Suspended TSS @ 105 C	7	mg/L		5		A2540 D	09/19/11 12:25 / cmm
INORGANICS							
Cyanide, Total	0.017	mg/L		0.005		Kelada mod	09/26/11 12:30 / eli-b
Alkalinity, Total as CaCO3	95	mg/L		4		A2320 B	09/20/11 19:23 / cmm
Sulfate	22	mg/L		1		E300.0	09/23/11 03:28 / zeg
Cyanide, Free	ND	mg/L		0.20		A4500-CN-F	09/26/11 09:30 / eli-b
Cyanide, Weak Acid Dissociable	0.013	mg/L		0.005		D2036C	09/26/11 14:57 / eli-b
NUTRIENTS							
Nitrogen, Nitrate+Nitrite as N	0.35	mg/L		0.05		E353.2	09/20/11 10:15 / reh
Nitrogen, Ammonia as N	ND	mg/L		0.1		E350.1	09/22/11 16:52 / reh
METALS, TOTAL RECOVERABLE							
Copper	0.001	mg/L		0.001		E200.8	09/20/11 21:58 / dck
Selenium	0.007	mg/L		0.001		E200.8	09/20/11 21:58 / dck

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

Prepared by Helena, MT Branch

 Client:
 Tetra Tech Inc
 Report Date:
 09/29/11

 Project:
 Beal Mtn Mine
 Collection Date:
 09/14/11 13:00

 Lab ID:
 H11090277-016
 DateReceived:
 09/16/11

 Client Sample ID
 SPR-D2
 Matrix:
 Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL PROPERTIES							
Solids, Total Suspended TSS @ 105 C	ND	mg/L		5		A2540 D	09/19/11 12:26 / cmm
INORGANICS							
Cyanide, Total	0.066	mg/L		0.005		Kelada mod	09/26/11 12:31 / eli-b
Alkalinity, Total as CaCO3	29	mg/L		4		A2320 B	09/20/11 19:37 / cmm
Sulfate	140	mg/L		1		E300.0	09/23/11 03:42 / zeg
Cyanide, Free	ND	mg/L		0.20		A4500-CN-F	09/26/11 09:30 / eli-b
Cyanide, Weak Acid Dissociable	0.021	mg/L		0.005		D2036C	09/26/11 14:43 / eli-b
NUTRIENTS							
Nitrogen, Nitrate+Nitrite as N	0.35	mg/L		0.05		E353.2	09/20/11 10:10 / reh
Nitrogen, Ammonia as N	ND	mg/L		0.1		E350.1	09/22/11 16:54 / reh
METALS, TOTAL RECOVERABLE							
Copper	ND	mg/L		0.001		E200.8	09/20/11 22:02 / dck
Selenium	0.002	mg/L		0.001		E200.8	09/20/11 22:02 / dck

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

Prepared by Helena, MT Branch

Client: Tetra Tech Inc
Project: Beal Mtn Mine
Lab ID: H11090277-017

Client Sample ID SPR-2

Report Date: 09/29/11

Collection Date: 09/14/11 13:45

DateReceived: 09/16/11

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL PROPERTIES							
Solids, Total Suspended TSS @ 105 C	6	mg/L		5		A2540 D	09/19/11 12:26 / cmm
INORGANICS							
Cyanide, Total	0.027	mg/L		0.005		Kelada mod	09/26/11 12:33 / eli-b
Alkalinity, Total as CaCO3	120	mg/L		4		A2320 B	09/20/11 19:44 / cmm
Sulfate	170	mg/L		1		E300.0	09/23/11 04:23 / zeg
Cyanide, Free	ND	mg/L		0.20		A4500-CN-F	09/26/11 09:30 / eli-b
Cyanide, Weak Acid Dissociable	0.007	mg/L		0.005		D2036C	09/26/11 14:59 / eli-b
NUTRIENTS							
Nitrogen, Nitrate+Nitrite as N	0.89	mg/L		0.05		E353.2	09/20/11 10:19 / reh
Nitrogen, Ammonia as N	ND	mg/L		0.1		E350.1	09/22/11 16:57 / reh
METALS, TOTAL RECOVERABLE							
Copper	0.001	mg/L		0.001		E200.8	09/20/11 22:07 / dck
Selenium	0.014	mg/L		0.001		E200.8	09/20/11 22:07 / dck

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

Client Sample ID BCD-A

LABORATORY ANALYTICAL REPORT

Prepared by Helena, MT Branch

Client: Tetra Tech Inc
Project: Beal Mtn Mine
Lab ID: H11090277-018

Report Date: 09/29/11
Collection Date: 09/14/11 14:00
DateReceived: 09/16/11
Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL PROPERTIES							
Solids, Total Suspended TSS @ 105 C	ND	mg/L		5		A2540 D	09/19/11 12:26 / cmm
INORGANICS							
Cyanide, Total	0.173	mg/L		0.005		Kelada mod	09/26/11 12:35 / eli-b
Alkalinity, Total as CaCO3	120	mg/L		4		A2320 B	09/20/11 19:51 / cmm
Sulfate	470	mg/L		1		E300.0	09/23/11 04:36 / zeg
Cyanide, Free	ND	mg/L		0.20		A4500-CN-F	09/26/11 09:30 / eli-b
Cyanide, Weak Acid Dissociable	0.034	mg/L		0.005		D2036C	09/26/11 14:45 / eli-b
NUTRIENTS							
Nitrogen, Nitrate+Nitrite as N	3.47	mg/L		0.05		E353.2	09/20/11 10:37 / reh
Nitrogen, Ammonia as N	ND	mg/L		0.1		E350.1	09/22/11 16:58 / reh
METALS, TOTAL RECOVERABLE							
Copper	0.002	mg/L		0.001		E200.8	09/20/11 22:11 / dck
Selenium	0.008	mg/L		0.001		E200.8	09/20/11 22:11 / dck

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

Prepared by Helena, MT Branch

Client: Tetra Tech Inc
Project: Beal Mtn Mine
Lab ID: H11090277-019

Client Sample ID SPR-19

Report Date: 09/29/11

Collection Date: 09/14/11 14:50

DateReceived: 09/16/11

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL PROPERTIES							
Solids, Total Suspended TSS @ 105 C	ND	mg/L		5		A2540 D	09/19/11 12:26 / cmm
INORGANICS							
Cyanide, Total	0.221	mg/L	D	0.006		Kelada mod	09/26/11 14:04 / eli-b
Alkalinity, Total as CaCO3	190	mg/L		4		A2320 B	09/20/11 20:15 / cmm
Sulfate	430	mg/L		1		E300.0	09/23/11 05:17 / zeg
Cyanide, Free	ND	mg/L		0.20		A4500-CN-F	09/26/11 09:30 / eli-b
Cyanide, Weak Acid Dissociable	0.033	mg/L		0.005		D2036C	09/26/11 14:52 / eli-b
NUTRIENTS							
Nitrogen, Nitrate+Nitrite as N	1.84	mg/L		0.05		E353.2	09/20/11 10:21 / reh
Nitrogen, Ammonia as N	ND	mg/L		0.1		E350.1	09/22/11 16:59 / reh
METALS, TOTAL RECOVERABLE							
Copper	0.001	mg/L		0.001		E200.8	09/20/11 22:33 / dck
Selenium	0.012	mg/L		0.001		E200.8	09/20/11 22:33 / dck

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

 $\ensuremath{\mathsf{D}}$ - $\ensuremath{\mathsf{RL}}$ increased due to sample matrix.

Prepared by Helena, MT Branch

 Client:
 Tetra Tech Inc
 Report Date:
 09/29/11

 Project:
 Beal Mtn Mine
 Collection Date:
 09/15/11 09:35

 Lab ID:
 H11090277-020
 DateReceived:
 09/16/11

 Client Sample ID
 SPR-5
 Matrix:
 Aqueous

					MCL/		
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By
PHYSICAL PROPERTIES							
Solids, Total Suspended TSS @ 105 C	ND	mg/L		5		A2540 D	09/19/11 12:27 / cmm
INORGANICS							
Cyanide, Total	ND	mg/L		0.005		Kelada mod	09/23/11 13:04 / eli-b1
Alkalinity, Total as CaCO3	86	mg/L		4		A2320 B	09/20/11 20:29 / cmm
Sulfate	1200	mg/L	D	5		E300.0	09/23/11 05:31 / zeg
Cyanide, Free	ND	mg/L		0.20		A4500-CN-F	09/26/11 09:30 / eli-b
Cyanide, Weak Acid Dissociable	NA	mg/L		0.005		D2036C	09/23/11 17:00 / eli-b1
- The Total Cyanide was analyzed, and was les	s than the repo	rting limit for V	Veak Acid Dissocial	ble (WAD)	Cyanide.	WAD Cyanide was	s not analyzed.
NUTRIENTS							
Nitrogen, Nitrate+Nitrite as N	0.70	mg/L		0.05		E353.2	09/20/11 10:22 / reh
Nitrogen, Ammonia as N	ND	mg/L		0.1		E350.1	09/22/11 17:01 / reh
METALS, TOTAL RECOVERABLE							
Copper	0.002	mg/L		0.001		E200.8	09/20/11 22:38 / dck
Selenium	0.044	mg/L		0.001		E200.8	09/20/11 22:38 / dck

Report RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

 $\ensuremath{\mathsf{D}}$ - $\ensuremath{\mathsf{RL}}$ increased due to sample matrix.

Prepared by Helena, MT Branch

 Client:
 Tetra Tech Inc
 Report Date:
 09/29/11

 Project:
 Beal Mtn Mine
 Collection Date:
 09/12/11 16:00

 Lab ID:
 H11090277-021
 DateReceived:
 09/16/11

 Client Sample ID
 SPR-Roadfill
 Matrix:
 Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL PROPERTIES							
Solids, Total Suspended TSS @ 105 C	ND	mg/L		5		A2540 D	09/19/11 12:27 / cmm
INORGANICS							
Cyanide, Total	ND	mg/L		0.005		Kelada mod	09/23/11 13:07 / eli-b1
Alkalinity, Total as CaCO3	89	mg/L		4		A2320 B	09/20/11 20:36 / cmm
Sulfate	380	mg/L		1		E300.0	09/23/11 05:44 / zeg
Cyanide, Free	ND	mg/L		0.20		A4500-CN-F	09/26/11 09:30 / eli-b
Cyanide, Weak Acid Dissociable	NA	mg/L		0.005		D2036C	09/23/11 17:00 / eli-b1
- The Total Cyanide was analyzed, and was less t	than the repo	rting limit for W	eak Acid Dissociat	ole (WAD)	Cyanide. \	WAD Cyanide was	s not analyzed.
NUTRIENTS							
Nitrogen, Nitrate+Nitrite as N	0.48	mg/L		0.05		E353.2	09/20/11 10:26 / reh
Nitrogen, Ammonia as N	ND	mg/L		0.1		E350.1	09/22/11 17:02 / reh
METALS, TOTAL RECOVERABLE							
Copper	0.002	mg/L		0.001		E200.8	09/20/11 22:42 / dck
Selenium	0.009	mg/L		0.001		E200.8	09/20/11 22:42 / dck

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

Prepared by Helena, MT Branch

Client:Tetra Tech IncReport Date:09/29/11Project:Beal Mtn MineWork Order:H11090277

Analyte	Count Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: A2320 B								Batch	n: R74519
Sample ID: MBLK	Method Blank				Run: MAN-TE	ECH_110919A		09/19	/11 16:59
Alkalinity, Total as CaCO3	2	mg/L	0.9						
Sample ID: LCS-09152011	Laboratory Con	trol Sample			Run: MAN-TE	ECH_110919A		09/19	/11 17:15
Alkalinity, Total as CaCO3	620	mg/L	4.0	103	90	110			
Sample ID: MBLK	Method Blank				Run: MAN-TE	ECH_110919A		09/20	/11 01:54
Alkalinity, Total as CaCO3	ND	mg/L	2						
Sample ID: LCS-09152011	Laboratory Con	trol Sample			Run: MAN-TE	ECH_110919A		09/20	/11 02:02
Alkalinity, Total as CaCO3	620	mg/L	4.0	103	90	110			
Sample ID: H11090298-021AMS	Sample Matrix	Spike			Run: MAN-TE	ECH_110919A		09/20	/11 02:34
Alkalinity, Total as CaCO3	610	mg/L	4.0	102	80	120			
Sample ID: H11090298-026ADUP	Sample Duplica	ate			Run: MAN-TF	ECH_110919A		09/20	/11 03:19
Alkalinity, Total as CaCO3	860	mg/L	4.0		TION. IVIVITY TE	2011_110010/1	0.6	10	11 00.10
Sample ID: H11090277-003ADUP	Sample Duplica	ato			Run: MANLTE	ECH_110919A		09/20	/11 04:18
Alkalinity, Total as CaCO3	62	mg/L	4.0		Mull. IVIAIN-11	_011_110919A	0.9	10	111 04.10
								Datal	D74554
Method: A2320 B Sample ID: MBLK	Method Blank				Dun: MAN TE	ECH 110920C			n: R74554 /11 16:54
Alkalinity, Total as CaCO3	метной ыапк	mg/L	2		Ruff. MAIN- I E	ECH_110920C		09/20	/11 16.54
•					D MANI TO	-011 4400000		00/00	/44 47:00
Sample ID: LCS 09152011 Alkalinity, Total as CaCO3	Laboratory Con 600	mg/L	4.0	100	90 Run: MAN-1E	ECH_110920C 110		09/20	/11 17:02
•								22/22	=
Sample ID: H11090328-002ADUP Alkalinity, Total as CaCO3	Sample Duplica 280	ate mg/L	4.0		Run: MAN-TE	ECH_110920C	0.0	09/20 10	/11 17:49
•			4.0				0.0	10	
Sample ID: H11090277-008AMS	Sample Matrix	-	4.0	04		ECH_110920C		09/20	/11 18:34
Alkalinity, Total as CaCO3	730	mg/L	4.0	91	80	120			
Sample ID: H11090277-015ADUP					Run: MAN-TE	ECH_110920C			/11 19:31
Alkalinity, Total as CaCO3	100	mg/L	4.0				6.5	10	
Sample ID: MBLK	Method Blank				Run: MAN-TE	ECH_110920C		09/20	/11 19:59
Alkalinity, Total as CaCO3	ND	mg/L	2						
Sample ID: LCS 09152011	Laboratory Con	trol Sample			Run: MAN-TE	ECH_110920C		09/20	/11 20:07
Alkalinity, Total as CaCO3	610	mg/L	4.0	101	90	110			
Sample ID: H11090277-019AMS	Sample Matrix	Spike			Run: MAN-TE	ECH_110920C		09/20	/11 20:22
Alkalinity, Total as CaCO3	710	mg/L	4.0	87	80	120			
Sample ID: H11090277-021ADUP	Sample Duplica	ate			Run: MAN-TE	ECH_110920C		09/20	/11 20:43
Alkalinity, Total as CaCO3	89	mg/L	4.0				0.0	10	
Sample ID: H11090277-021ADUP	Sample Duplica	ate		87		120 ECH_110920C	0.0		/1

Qualifiers:

RL - Analyte reporting limit.

Prepared by Helena, MT Branch

Client:Tetra Tech IncReport Date:09/29/11Project:Beal Mtn MineWork Order:H11090277

Analyte	Cou	nt Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	A2540 D								Bat	ch: 13906
Sample ID:	MB-13906	Method Blank				Run: ACCU	-124 (14410200)	_110919	09/19	/11 12:08
Solids, Total	Suspended TSS @ 105 C	ND	mg/L	3						
Sample ID:	LCS-13906	Laboratory Cont	rol Sample			Run: ACCU	-124 (14410200)	_110919	09/19	/11 12:08
Solids, Total	Suspended TSS @ 105 C	1710	mg/L	10	85	70	130			
Sample ID:	H11090268-001ADUP	Sample Duplica	te			Run: ACCU	-124 (14410200)	_110919	09/19	/11 12:09
Solids, Total	Suspended TSS @ 105 C	ND	mg/L	10					5	
Sample ID:	H11090277-003ADUP	Sample Duplica	te			Run: ACCU	-124 (14410200)	_110919	09/19	/11 12:12
Solids, Total	Suspended TSS @ 105 C	ND	mg/L	10					5	
Method:	A2540 D								Bat	ch: 13907
Sample ID:	MB-13907	Method Blank				Run: ACCU	-124 (14410200)	_110919	09/19	/11 12:15
Solids, Total	Suspended TSS @ 105 C	ND	mg/L	3						
Sample ID:	LCS-13907	Laboratory Cont	rol Sample			Run: ACCU	-124 (14410200)	_110919	09/19	/11 12:16
Solids, Total	Suspended TSS @ 105 C	1800	mg/L	10	90	70	130			
Sample ID:	H11090277-013ADUP	Sample Duplica	te			Run: ACCU	-124 (14410200)	_110919	09/19	/11 12:25
Solids, Total	Suspended TSS @ 105 C	ND	mg/L	10					5	
Sample ID:	H11090278-001ADUP	Sample Duplica	te			Run: ACCU	-124 (14410200)	_110919	09/19	/11 14:30
Solids, Total	Suspended TSS @ 105 C	ND	mg/L	10			. ,		5	

Qualifiers:

RL - Analyte reporting limit.

Prepared by Helena, MT Branch

Analyte	Count Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: D2036C								Batch:	B_57335
Sample ID: B11091202-008AMSE	Sample Matrix	Spike Duplicate			Run: SUB-E	3173149		09/26/	/11 14:16
Cyanide, Weak Acid Dissociable	0.119	mg/L	0.0050	113	80	120	6.7	10	
Sample ID: LCS-57335	Laboratory Con	trol Sample			Run: SUB-E	3173149		09/26	/11 14:06
Cyanide, Weak Acid Dissociable	0.102	mg/L	0.0050	102	90	110			
Sample ID: MB-57335	Method Blank				Run: SUB-E	3173149		09/26	/11 14:08
Cyanide, Weak Acid Dissociable	ND	mg/L	0.003						
Sample ID: B11091202-008AMS	Sample Matrix	Spike			Run: SUB-E	3173149		09/26	/11 14:14
Cyanide, Weak Acid Dissociable	0.111	mg/L	0.0050	105	80	120			

Prepared by Helena, MT Branch

Client:Tetra Tech IncReport Date:09/29/11Project:Beal Mtn MineWork Order:H11090277

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E200.8							Analytic	al Run:	ICPMS204-B	_110920
Sample ID: ICV STD	2 Ir	nitial Calibratio	n Verification S	Standard					09/20/	/11 10:23
Copper		0.0513	mg/L	0.010	103	90	110			
Selenium		0.0520	mg/L	0.0050	104	90	110			
Sample ID: ICSA	2 Ir	nterference Ch	neck Sample A						09/20/	/11 10:27
Copper		0.000422	mg/L	0.010						
Selenium		0.000192	mg/L	0.0050						
Sample ID: ICSAB	2 Ir	nterference Ch	neck Sample A	В					09/20/	/11 10:31
Copper		0.0205	mg/L	0.010	102	70	130			
Selenium		0.0104	mg/L	0.0050	104	70	130			
Sample ID: ICV STD	2 Ir	nitial Calibratio	n Verification S	Standard					09/20/	/11 16:02
Copper		0.0525	mg/L	0.010	105	90	110			
Selenium		0.0533	mg/L	0.0050	107	90	110			
Sample ID: ICSA	2 Ir	nterference Ch	neck Sample A						09/20/	/11 16:06
Copper		0.000449	mg/L	0.010						
Selenium		0.000383	mg/L	0.0050						
Sample ID: ICSAB	2 Ir	nterference Ch	neck Sample A	.B					09/20/	/11 16:11
Copper		0.0205	mg/L	0.010	102	70	130			
Selenium		0.0104	mg/L	0.0050	104	70	130			
Sample ID: ICV STD	2 Ir	nitial Calibratio	n Verification 9	Standard					09/20/	/11 23:36
Copper		0.0530	mg/L	0.010	106	90	110			
Selenium		0.0516	mg/L	0.0050	103	90	110			
Sample ID: ICSA	2 Ir	nterference Ch	neck Sample A						09/20/	/11 23:40
Copper		0.000433	mg/L	0.010						
Selenium		0.000294	mg/L	0.0050						
Sample ID: ICSAB	2 Ir	nterference Ch	neck Sample A	В					09/20/	/11 23:44
Copper		0.0203	mg/L	0.010	102	70	130			
Selenium		0.00996	mg/L	0.0050	100	70	130			
Method: E200.8									Bat	ch: 13913
Sample ID: MB-13913	2 N	lethod Blank				Run: ICPMS	S204-B_110920 <i>F</i>	A	09/20/	/11 17:14
Copper		ND	mg/L	0.0004						
Selenium		ND	mg/L	0.0002						
Sample ID: LCS-13913	2 L	aboratory Con	trol Sample			Run: ICPMS	S204-B_110920 <i>F</i>	A	09/20/	/11 17:18
Copper		0.508	mg/L	0.010	102	85	115			
Selenium		0.518	mg/L	0.0050	104	85	115			
Sample ID: H11090249-	002DMS3 2 S	ample Matrix	Spike			Run: ICPMS	S204-B_110920 <i>F</i>	A	09/20/	/11 17:54
Copper		0.561	mg/L	0.010	102	70	130			
Selenium		0.830	mg/L	0.0050	116	70	130			

Qualifiers:

RL - Analyte reporting limit.

Prepared by Helena, MT Branch

Client:Tetra Tech IncReport Date:09/29/11Project:Beal Mtn MineWork Order:H11090277

Analyte		Cou	nt Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E200.8									Bat	ch: 13913
Sample ID:	H11090249-002DMSD	3 2	Sample Matrix	Spike Duplicate			Run: ICPMS	S204-B_110920A		09/20/	/11 17:58
Copper			0.557	mg/L	0.010	101	70	130	0.7	20	
Selenium			0.810	mg/L	0.0050	112	70	130	2.6	20	
Method:	E200.8									Batch	n: R74556
Sample ID:	ICB	2	Method Blank				Run: ICPMS	S204-B_110920A		09/20/	/11 11:28
Copper			ND	mg/L	3E-05						
Selenium			ND	mg/L	4E-05						
Sample ID:	LFB	2	Laboratory Fort	tified Blank			Run: ICPMS	S204-B_110920A		09/20/	/11 11:32
Copper			0.0484	mg/L	0.010	97	85	115			
Selenium			0.0499	mg/L	0.0050	100	85	115			
Sample ID:	H11090254-031BMS	2	Sample Matrix	Spike			Run: ICPMS	S204-B_110920A		09/20/	/11 19:18
Copper			0.0470	mg/L	0.010	94	70	130			
Selenium			0.0531	mg/L	0.0050	105	70	130			
Sample ID:	H11090254-031BMSD	2	Sample Matrix	Spike Duplicate			Run: ICPMS	S204-B_110920A		09/20/	/11 19:40
Copper			0.0474	mg/L	0.010	94	70	130	0.9	20	
Selenium			0.0531	mg/L	0.0050	105	70	130	0.0	20	
Sample ID:	H11090277-008BMS	2	Sample Matrix	Spike			Run: ICPMS	S204-B_110920A		09/20/	/11 21:00
Copper			0.0471	mg/L	0.010	94	70	130			
Selenium			0.0552	mg/L	0.0050	110	70	130			
Sample ID:	H11090277-008BMSD	2	Sample Matrix	Spike Duplicate			Run: ICPMS	S204-B_110920A		09/20/	/11 21:05
Copper			0.0477	mg/L	0.010	95	70	130	1.4	20	
Selenium			0.0538	mg/L	0.0050	107	70	130	2.7	20	

Qualifiers:

RL - Analyte reporting limit.

Prepared by Helena, MT Branch

Client:Tetra Tech IncReport Date:09/29/11Project:Beal Mtn MineWork Order:H11090277

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E300.0								Analytical F	lun: IC102-H	_110922A
Sample ID:	ICV092211-12	Initi	al Calibratio	n Verification	Standard					09/22	/11 17:30
Sulfate			420	mg/L	1.0	105	90	110			
Sample ID:	CCV092211-30	Cor	ntinuing Cali	bration Verific	cation Standard					09/22	/11 21:35
Sulfate			410	mg/L	1.0	103	90	110			
Sample ID:	CCV092211-44	Cor	ntinuing Cali	bration Verific	cation Standard					09/23	3/11 00:45
Sulfate			410	mg/L	1.0	104	90	110			
Sample ID:	CCV092211-58	Cor	ntinuing Cali	bration Verific	cation Standard					09/23	3/11 03:56
Sulfate			410	mg/L	1.0	103	90	110			
Method:	E300.0									Batcl	h: R74653
Sample ID:	ICB092211-13	Met	thod Blank				Run: IC102	-H_110922A		09/22	/11 17:44
Sulfate			ND	mg/L	0.02						
Sample ID:	LFB092211-14	Lab	oratory Fort	ified Blank			Run: IC102	-H_110922A		09/22	/11 17:57
Sulfate			200	mg/L	1.1	101	90	110			
Sample ID:	H11090277-001AMS	Sar	mple Matrix :	Spike			Run: IC102	-H_110922A		09/22	/11 23:10
Sulfate			230	mg/L	1.1	105	90	110			
Sample ID:	H11090277-001AMSI	D Sar	mple Matrix :	Spike Duplica	te		Run: IC102	-H_110922A		09/22	/11 23:24
Sulfate			240	mg/L	1.1	107	90	110	1.4	20	
Sample ID:	H11090277-010AMS	Sar	mple Matrix	Spike			Run: IC102	-H_110922A		09/23	3/11 02:07
Sulfate			400	mg/L	1.1	106	90	110			
Sample ID:	H11090277-010AMSI	D Sar	mple Matrix :	Spike Duplica	te		Run: IC102	-H_110922A		09/23	3/11 02:20
Sulfate			400	mg/L	1.1	107	90	110	0.2	20	
Sample ID:	H11090277-018AMS	Sar	mple Matrix	Spike			Run: IC102	-H_110922A		09/23	3/11 04:50
Sulfate			680	mg/L	1.1	103	90	110			
Sample ID:	H11090277-018AMSI	D Sar	mple Matrix	Spike Duplica	te		Run: IC102	-H_110922A		09/23	3/11 05:04
Sulfate			680	mg/L	1.1	105	90	110	0.6	20	

Qualifiers:

RL - Analyte reporting limit.

Prepared by Helena, MT Branch

Client:Tetra Tech IncReport Date:09/29/11Project:Beal Mtn MineWork Order:H11090277

Analyte	Count I	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E350.1							Analyt	ical Run	: FIA203-HE	_110922A
Sample ID: ICV	Initial (Calibration	Nerification Sta	ındard					09/22	/11 15:54
Nitrogen, Ammonia as N		1.10	mg/L	0.10	110	90	110			
Sample ID: ICB	Initial (Calibration	n Blank, Instrum	ent Blank					09/22	/11 15:59
Nitrogen, Ammonia as N	-	0.0604	mg/L	0.10		0	0			
Method: E350.1									Batcl	h: R74640
Sample ID: LCS	Labora	atory Cont	rol Sample			Run: FIA20	3-HE_110922A		09/22	/11 15:55
Nitrogen, Ammonia as N		15.1	mg/L	0.50	96	90	110			
Sample ID: LFB	Labora	atory Forti	fied Blank			Run: FIA20	3-HE_110922A		09/22	/11 15:56
Nitrogen, Ammonia as N		0.963	mg/L	0.10	96	90	110			
Sample ID: MBLK	Metho	d Blank				Run: FIA20	3-HE_110922A		09/22	/11 16:00
Nitrogen, Ammonia as N		ND	mg/L	0.002						
Sample ID: H11090277-004CMS	Sampl	le Matrix S	Spike			Run: FIA20	3-HE_110922A		09/22	/11 16:31
Nitrogen, Ammonia as N		0.852	mg/L	0.10	85	80	120			
Sample ID: H11090277-004CMSE	S ampl	le Matrix S	Spike Duplicate			Run: FIA20	3-HE_110922A		09/22	/11 16:32
Nitrogen, Ammonia as N		0.871	mg/L	0.10	87	80	120	2.2	10	
Sample ID: H11090277-006CMS	Sampl	le Matrix S	Spike			Run: FIA20	3-HE_110922A		09/22	/11 16:38
Nitrogen, Ammonia as N		0.893	mg/L	0.10	89	80	120			
Sample ID: H11090277-006CMSE	Sampl	le Matrix S	Spike Duplicate			Run: FIA20	3-HE_110922A		09/22	/11 16:39
Nitrogen, Ammonia as N		0.873	mg/L	0.10	87	80	120	2.3	10	
Sample ID: H11090277-016CMS	Sampl	le Matrix S	Spike			Run: FIA20	3-HE_110922A		09/22	/11 16:55
Nitrogen, Ammonia as N		0.904	mg/L	0.10	90	80	120			
Sample ID: H11090277-016CMSE	S ampl	le Matrix S	Spike Duplicate			Run: FIA20	3-HE_110922A		09/22	/11 16:56
Nitrogen, Ammonia as N		0.905	mg/L	0.10	91	80	120	0.2	10	

Qualifiers:

RL - Analyte reporting limit.

Prepared by Helena, MT Branch

Client:Tetra Tech IncReport Date:09/29/11Project:Beal Mtn MineWork Order:H11090277

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E353.2							Analy	tical Run	: FIA203-HE	_110920A
Sample ID: ICV	Initi	ial Calibratio	n Verification	Standard					09/20	/11 09:13
Nitrogen, Nitrate+Nitrite as N		1.07	mg/L	0.050	107	90	110			
Sample ID: ICB	Initi	ial Calibratio	n Blank, Insti	rument Blank					09/20	/11 09:19
Nitrogen, Nitrate+Nitrite as N		-0.00621	mg/L	0.050		0	0			
Sample ID: CCV	Coi	ntinuing Cali	bration Verifi	cation Standard					09/20	/11 09:38
Nitrogen, Nitrate+Nitrite as N		0.494	mg/L	0.050	99	90	110			
Sample ID: CCV	Coi	ntinuing Cali	bration Verifi	cation Standard					09/20	/11 09:56
Nitrogen, Nitrate+Nitrite as N		0.491	mg/L	0.050	98	90	110			
Sample ID: CCV	Cor	ntinuing Cali	bration Verifi	cation Standard					09/20	/11 10:18
Nitrogen, Nitrate+Nitrite as N		0.488	mg/L	0.050	98	90	110			
Method: E353.2									Batcl	n: R74531
Sample ID: LCS	Lab	oratory Con	trol Sample			Run: FIA20	3-HE_110920A		09/20	/11 09:14
Nitrogen, Nitrate+Nitrite as N		25.1	mg/L	0.20	104	90	110			
Sample ID: LFB	Lab	oratory Fort	ified Blank			Run: FIA20	3-HE_110920A		09/20	/11 09:15
Nitrogen, Nitrate+Nitrite as N		1.000	mg/L	0.050	100	90	110			
Sample ID: MBLK	Me	thod Blank				Run: FIA20	3-HE_110920A		09/20	/11 09:20
Nitrogen, Nitrate+Nitrite as N		ND	mg/L	0.0009						
Sample ID: H11090268-005CMS	Sar	mple Matrix	Spike			Run: FIA20	3-HE_110920A		09/20	/11 09:40
Nitrogen, Nitrate+Nitrite as N		0.965	mg/L	0.050	97	90	110			
Sample ID: H11090268-005CMSI	D Sar	mple Matrix	Spike Duplica	ate		Run: FIA20	3-HE_110920A		09/20	/11 09:42
Nitrogen, Nitrate+Nitrite as N		0.964	mg/L	0.050	96	90	110	0.2	20	
Sample ID: H11090277-007CMS	Sar	mple Matrix	Spike			Run: FIA20	3-HE_110920A		09/20	/11 09:58
Nitrogen, Nitrate+Nitrite as N		1.28	mg/L	0.050	93	90	110			
Sample ID: H11090277-007CMSI	D Sar	mple Matrix	Spike Duplica	ate		Run: FIA20	3-HE_110920A		09/20	/11 10:00
Nitrogen, Nitrate+Nitrite as N		1.30	mg/L	0.050	95	90	110	1.2	20	
Sample ID: H11090277-020CMS	Sar	mple Matrix	Spike			Run: FIA20	3-HE_110920A		09/20	/11 10:34
Nitrogen, Nitrate+Nitrite as N		1.58	mg/L	0.050	88	90	110			S
Sample ID: H11090277-020CMSI	D Sar	mple Matrix	Spike Duplica	ate		Run: FIA20	3-HE_110920A		09/20	/11 10:36
Nitrogen, Nitrate+Nitrite as N		1.61	mg/L	0.050	91	90	110	79	20	R

Qualifiers:

RL - Analyte reporting limit.

R - RPD exceeds advisory limit.

ND - Not detected at the reporting limit.

S - Spike recovery outside of advisory limits.

Prepared by Helena, MT Branch

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E353.2							Analy	tical Rur	: FIA203-HE	_110926A
Sample ID: ICV	Initia	d Calibration	n Verification Sta	ındard					09/26	/11 12:29
Nitrogen, Nitrate+Nitrite as N		1.07	mg/L	0.050	107	90	110			
Sample ID: CCV	Cont	tinuing Calil	oration Verification	on Standard					09/26	/11 12:33
Nitrogen, Nitrate+Nitrite as N		0.488	mg/L	0.050	98	90	110			
Sample ID: ICB	Initia	al Calibration	n Blank, Instrum	ent Blank					09/26	/11 12:36
Nitrogen, Nitrate+Nitrite as N		-0.00651	mg/L	0.050		0	0			
Method: E353.2									Batch	n: R74705
Sample ID: LCS	Labo	oratory Cont	rol Sample			Run: FIA203	3-HE_110926A		09/26	/11 12:31
Nitrogen, Nitrate+Nitrite as N		25.5	mg/L	0.20	105	90	110			
Sample ID: LFB	Labo	oratory Forti	fied Blank			Run: FIA203	B-HE_110926A		09/26	/11 12:32
Nitrogen, Nitrate+Nitrite as N		0.997	mg/L	0.050	100	90	110			
Sample ID: MBLK	Meth	nod Blank				Run: FIA203	B-HE_110926A		09/26	/11 12:37
Nitrogen, Nitrate+Nitrite as N		ND	mg/L	0.0009						
Sample ID: H11090323-001BMS	Sam	ple Matrix S	Spike			Run: FIA203	B-HE_110926A		09/26	/11 12:40
Nitrogen, Nitrate+Nitrite as N		1.20	mg/L	0.050	93	90	110			
Sample ID: H11090323-001BMSI	D Sam	ple Matrix S	Spike Duplicate			Run: FIA203	B-HE_110926A		09/26	/11 12:41
Nitrogen, Nitrate+Nitrite as N		1.20	mg/L	0.050	94	90	110	0.6	20	

Prepared by Helena, MT Branch

Client: Tetra Tech Inc **Report Date:** 09/29/11 Project: Beal Mtn Mine Work Order: H11090277

Analyte	Count Resu	It Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: Kelada mod							Analytic	cal Run: SUB	-B173081
Sample ID: ICV	Initial Calib	ation Verification S	Standard					09/23	/11 10:29
Cyanide, Total	0.10	06 mg/L	0.0050	106	90	110			
Method: Kelada mod								Batch:	B_57252
Sample ID: H11090277-011D	Sample Ma	trix Spike Duplicat	е		Run: SUB-E	3173081		09/23	/11 12:53
Cyanide, Total	0.10	06 mg/L	0.0050	106	90	110	6.0	10	
Sample ID: LFB	Laboratory	Fortified Blank			Run: SUB-E	3173081		09/23	/11 10:32
Cyanide, Total	0.10	00 mg/L	0.0050	100	90	110			
Sample ID: H11090277-011D	Sample Ma	trix Spike			Run: SUB-E	3173081		09/23	/11 12:51
Cyanide, Total	0.11	l3 mg/L	0.0050	113	90	110			S
Sample ID: MB	Method Bla	nk			Run: SUB-E	3173081		09/23	/11 10:34
Cyanide, Total	N	D mg/L	0.002						
Sample ID: B11091720-006FMS	Sample Ma	trix Spike			Run: SUB-E	3173081		09/23	/11 12:07
Cyanide, Total	0.081	11 mg/L	0.0050	81	90	110			S
Sample ID: B11091720-006FMSD	Sample Ma	trix Spike Duplicat	е		Run: SUB-E	3173081		09/23	/11 12:10
Cyanide, Total	0.081	13 mg/L	0.0050	81	90	110	0.2	10	S
Method: Kelada mod							Analytic	cal Run: SUB	-B173149
Sample ID: ICV-1	Initial Calib	ation Verification S	Standard					09/26	/11 11:44
Cyanide, Total	0.10)9 mg/L	0.0050	109	90	110			
Method: Kelada mod								Batch:	B_57321
Sample ID: LCS-57321	Laboratory	Control Sample			Run: SUB-E	3173149		09/26	/11 11:49
Cyanide, Total	0.10)9 mg/L	0.0050	109	90	110			
Sample ID: MB-57321	Method Bla	nk			Run: SUB-E	3173149		09/26	/11 11:51
Cyanide, Total	N	D mg/L	0.002						
Sample ID: H11090277-002D	Sample Ma	trix Spike			Run: SUB-E	3173149		09/26	/11 12:04
Cyanide, Total	0.093	34 mg/L	0.0050	93	90	110			
Sample ID: H11090277-002D	Sample Ma	trix Spike Duplicat	е		Run: SUB-E	3173149		09/26	/11 12:06
Cyanide, Total	0.086	31 mg/L	0.0050	86	90	110	8.2	10	S

Qualifiers:

RL - Analyte reporting limit.

Workorder Receipt Checklist

H11090277

Tetra Tech Inc

Login completed by: Tracy L. Lorash Date Received: 9/16/2011 Reviewed by: BL2000\kwiegand Received by: elm Reviewed Date: 9/19/2011 Carrier Hand Del name: Shipping container/cooler in good condition? Yes ✓ No \square Not Present Custody seals intact on shipping container/cooler? Yes Not Present ✓ No \square Custody seals intact on sample bottles? Yes Not Present ✓ No 🗌 Chain of custody present? Yes ✓ No 🔲 Chain of custody signed when relinquished and received? Yes √ No \square Chain of custody agrees with sample labels? Yes No √ Samples in proper container/bottle? Yes ✓ No 🔲 Sample containers intact? Yes √ No 🗌 Sufficient sample volume for indicated test? Yes √ No □ All samples received within holding time? Yes √ No 🗌 (Exclude analyses that are considered field parameters such as pH, DO, Res CI, Sulfite, Ferrous Iron, etc.) 3.4℃ Container/Temp Blank temperature: Yes Water - VOA vials have zero headspace? No VOA vials submitted No 🗌 Water - pH acceptable upon receipt? Yes √ No 🖂 Not Applicable

Contact and Corrective Action Comments:

Sample ID BS-D has a collection time of 12:50 on the bottle and 12:45 on the COC. Logged in with the collection time from the COC. Sample ID on the COC is Dup - sample bottle has ID of Dup-1. We received a sample set labeled SPR-Roadfill collected on 9/12/11 @ 1600 that is not on the COC. Emailed Jim Maus. TI 9/16/11. Per email from Jim Maus, The "Dup" on the COC should have read "Dup-1". "SPR-Roadfill" was inadvertently left off the COC. Please analyze BOTH samples for the Table 4 analyte list. TI 9/19/11.

ENEKGY 🐯	Chain of Custody	/ and An	and Analytical Request Record	ord Seille)	Page / of A
Company Name:		Project Name, PWS, Permit, Etc.		Sample Origin	EPA/State Compliance:
Tetra Tech		Beal Mr. Min	,	State: MT	Yes 🗌 🕦
<u>Sai</u>		Name:	Phone/Fax:	Email:	Sampler: (Please Print)
303 Irans 37721	10765	اع د	ues, nows@tetratech.com	ch.com	Jim Maus
ess:		Invoice Contact & Phone:		Purchase Order:	Quote/Bottle Order:
Some		30000			8345
Special Report/Formats:		_	ANALYSIS REQUESTIED	Contact ELI prior to RUSH sample submittal	to Shipped by:
Ž	EDD/EDT/ebottonic Pots)	say Encers Sy Other Water		R scheduling – See Instruction Page	
/wwtp		of Col W A W er <u>S</u> olis 1 <u>B</u> loas inking		U Comments:	Receipt Temp
Other:	LEVEL IV	Type Type Hation W - Dr M - Dr		Sae	Attached on ice: Y N
		Sample Managar Man Man	SEE	5 Table	Custody Seal On Bottle Y (M) On Cooler Y (N)
SAMPLE IDENTIFICATION (Name, Location, Interval, etc.)	Collection Collection Date Time	MATRIX PLA	98	I.	Intact Y R Signature Y N Match
578-1	9-12-11 1130	42 QQ QQ			1.110902117
J. 25 - 85-D	3/12/11 1248	$\psi \omega = 1$, : : : : : : :
3 STA-2	9-12-11 1400	3			0 3
* STA-3A	9-12-11 1445	73.6			ISA
\$ SPR-7	9-12-11 1545	3) <i>2</i> ,8
° 502-3	9-12-11 1630	40			£1©.
rea-D4	9-12-11 1710	75			<u>/</u> _(\ \ ∕\ \
" MINN-DN	9-12-11 1750	4.0			40
spr-10A	9-15-11 0950	7			I
	0090 11-21-6	11 \ \ \ mh	!	į	7
_	s 9/16/11 1125	Signature:		Date/Time	olgnature:
IΩ		Signature:		Date/Time:	Signature:
Sample Disposal:	Return to Client:	Lab Disposal:	Received by Laboratory:	11 11-91.6 77	Break Hun He

Chain of Custody and Analytical Request Record

In certain circumstances, samples submitted to Energy Laboratories, Inc. may be subcontracted to other certified laboratories in order to complete the analysis requested.

This serves as notice of this possibility. All sub-contract data will be clearly notated on your analytical report.

Visit our web site at www energylab comm for additional information, downloadable fee schedule, forms, and links.

Page 36 of 38

,	
ENERGY	

Chain of Custody and Analytical Request Record

Page 2 of 2

Company Name	.01		ļ	Project Name PWS Permit Fit	DWG o	Armit Fire	Permit Fto	1011 101	Samo	Sample Origin	FPA/Stat	FPA/State Compliance
Company van	Ž ,			ייום וחופבר ואמוויו	- 5	, in the second			5	180	i	-
Tetra Fech	505			1300/	1120	1/1/26	J		State:	HT	∖ Yes	□º
۱÷۳	Idress:			Contact Name:	ne:	Phon	×	\	Email:	<u> </u>	Sampter:	Sampler: (Please Print)
303 IV	Irens 31 5960	10:		443- 6	- 5210	James	uss Maus@tetra	* * * * * * * * * * * * * * * * * * *	, Tach,	. com	HE	Maus
Invoice Address:				Invoice Contact & Phone:	tact & Pho	ine:	!		Purch	Purchase Order:	Quote/Bc	Quote/Bottle Order
Same				Same	1						}	8345
Special Rep	Special Report/Formats:			W	-	ANNALYSIS F	REQUESTED		1	Contact ELI prior to		Shipped by:
Ž	L	i i		rtainers S V B O D Solids Say <u>O</u> ther Water	100				<u>~</u>	for charges and scheduling – See Instruction Page	<u> </u>	Cooler ID(s):
	WYTP _	Format:	ectronic Data)	of Cor : A W : : <u>S</u> olis : <u>B</u> ioas	س، در	3			⊃	Comments:		Receipt Temp
State: Other:		LEVEL IV NELAC		naber e Type ir Wate noßste hG - W	100	st.		TTA		-T	3	^
				JN oldms2 A po⊻ d	1 15.00 C	4 . en		SEE		Table	7	Custody Seal On Bottle Y N On Cooler Y
SAMPLE II (Name, Loca	SAMPLE IDENTIFICATION (Name, Location, Interval, etc.)	Collection Date	Collection Time	MATRIX	7901 1401	~Z		5	H		- 0 E	Signature Y N Match
, STA-4		11/41/6	0915	7 7	X	X						H11090277
2 MB-Drain	تعالم	4-14-11	1005	ηh		7	-			-		מהאוד
BeD-	BCD-Barrey		1035	4~							9 5	റ ട
4360		11-41-6	1105	42							SA	
SPR	.18	9-14-11	0221	44							<i>x</i> /\(\)(л
, 2012.	DZ	9-14-11	1300	47								YO.
'SPR-	2	4-14-11	1345	410							<u></u>	<i>п ⊊</i> 7
BCD-A	H-	9-14-11	1,400	4W							<u>J</u> Ų	ĽI⊘
9 SPR-19	- 19	9-14-11	1450	4							⊕ W	والم
10 SPR-		9-15	0935	40	_						U	רא. רא
Custody	Relinquished by (print):	24.5	me: //25		ture:	}	Received by (print):		Date/Time:		Signature	l Tas
Record	Reinquished by (print):	Date/Time:		Signature.	ture:		Received by (print):		Date/Time		Signature	
Signed	Sample Disposal:	Return to Client:		Lab Disposal:	(a);		Escelves by Laborago	Ter	Date/Time	9.1611113	Signatur	Mark

In certain circumstances, samples submitted to Energy Laboratories, Inc. may be subcontracted to other certified laboratories in order to complete the analysis requested.

This serves as notice of this possibility, Ali sub-contract data will be clearly notated on your analytical report.

Visit our web site at www energylah com for additional information, downloadable fee schedule, forms, and links.

Page 37 of 38

Beal 2011 Site Wide Monitoring Analytic Summary:

Surface Water 23 samples X 2 events For Table 4

SURFACE WATER A	TABL AND SPRING	E 4 ANALYTICAL REQUII	REMENTS						
Parameter	MDL (mg/L) ⁽¹⁾	Method No.	Max. Holding Time						
	Physicoch	nemical							
Total Suspended Solids	5.0	E160.2	7 Days						
Alkalinity, total ³	4.0	A2320B	14 Days						
	Metal	s ⁽²⁾							
Copper	0.001	E200.8	6 Months						
Selenium 0.001 E200.8 6 Months									
	Inorgai	nics	- ····						
Cyanide, free	0.2	SM4500 CN F	14 Days						
Cyanide, total	0.005	SM4500 CN / 335.4	14 Days						
Cyanide, weak acid dissociable (WAD)	0.005	SM 4500	14 Days						
	Nutrie	nts							
Ammonia (low level)	0.1	SM4500 NH3	28 Days						
Nitrogen, Nitrate+Nitrite as N	0.05	E353.2	28 Days						
Sulfate ³	1.0	E300.0	28 Days						

- MDL = Method Detection Limit in milligrams per liter (mg/L)
- Surface water and spring parameters will be analyzed for total recoverable metals.

 Alkalinity and Sulfate to be analyzed only at locations SPR-5, SPR-10A, Toe Drain, and MB-Drain.

ANALYTICAL SUMMARY REPORT

October 13, 2011

Tetra Tech Inc 303 Irene St Helena, MT 59601

Workorder No.: H11090249 Quote ID: H634 - Beal 2011 Site Wide Monitoring

Project Name: Beal Mtn Mine

Energy Laboratories Inc Helena MT received the following 3 samples for Tetra Tech Inc on 9/15/2011 for analysis.

Sample ID	Client Sample ID	Collect Date	Receive Date	Matrix	Test
H11090249-001	Sump-1	09/14/11 17	:20 09/15/11	Aqueous	Metals by ICP/ICPMS, Dissolved Metals by ICP/ICPMS, Tot. Rec. Alkalinity Cyanide, Total Manual Distillation Thiocyanate Total Cyanide Digestion Cyanide, Weak Acid Dissociable WAD Cyanide Distillation Conductivity Fluoride Anions by Ion Chromatography Nitrogen, Ammonia Nitrogen, Nitrite Nitrogen, Nitrite pH Metals Digestion by EPA 200.2 Digestion, Total P Water Preparation for TDS Phosphorus, Total Solids, Total Dissolved
H11090249-002	Sump-3A	09/14/11 18	:10 09/15/11	Aqueous	Same As Above
H11090249-003	Dup-2	09/14/11 6:0	00 09/15/11	Aqueous	Same As Above

The analyses presented in this report were performed by Energy Laboratories, Inc., 3161 E. Lyndale Ave., Helena, MT 59604, unless otherwise reported.

Any exceptions or problems with the analyses are noted in the Laboratory Analytical Report, the QA/QC Summary Report, or the Case Narrative.

The results as reported relate only to the item(s) submitted for testing.

If you have any questions regarding these test results, please call.

Report Approved By:

www.energylab.com

Report Date: 10/13/11

CLIENT: Tetra Tech Inc Project: Beal Mtn Mine

CASE NARRATIVE Sample Delivery Group: H11090249

Tests associated with analyst identified as ELI-B were subcontracted to Energy Laboratories, 1120 S. 27th St., Billings, MT, EPA Number MT00005.

Prepared by Helena, MT Branch

 Client:
 Tetra Tech Inc
 Report Date:
 10/13/11

 Project:
 Beal Mtn Mine
 Collection Date:
 09/14/11 17:20

 Lab ID:
 H11090249-001
 DateReceived:
 09/15/11

 Client Sample ID
 Sump-1
 Matrix:
 Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL PROPERTIES							
рН	8.1	s.u.		0.1		A4500-H B	09/16/11 01:43 / zeg
Conductivity	3350	umhos/cm		1		A2510 B	09/16/11 09:41 / cmm
Solids, Total Dissolved TDS @ 180 C	3560	mg/L		10		A2540 C	09/16/11 11:54 / cmm
INORGANICS							
Cyanide, Total	0.33	mg/L	D	0.02		Kelada mod	09/26/11 11:55 / eli-b
Thiocyanate as N	0.094	mg/L		0.048		A4500-CN M	09/22/11 09:30 / eli-b1
Alkalinity, Total as CaCO3	260	mg/L		4		A2320 B	09/16/11 01:43 / zeg
Chloride	86	mg/L	D	2		E300.0	09/22/11 01:33 / zeg
Sulfate	2200	mg/L	D	10		E300.0	09/22/11 01:33 / zeg
Cyanide, Weak Acid Dissociable	0.18	mg/L	D	0.01		D2036C	09/26/11 14:34 / eli-b
Thiocyanate	0.39	mg/L		0.20		A4500-CN M	09/22/11 09:30 / eli-b1
Fluoride	0.4	mg/L		0.1	4	A4500-F C	09/26/11 15:37 / zeg
NUTRIENTS							
Nitrogen, Nitrate+Nitrite as N	18.1	mg/L	D	0.2		E353.2	09/19/11 12:51 / reh
Nitrogen, Ammonia as N	7.2	mg/L	D	0.5		E350.1	09/22/11 17:33 / reh
Nitrogen, Nitrite as N	7	mg/L	D	1		E353.2	09/15/11 15:20 / reh
Phosphorus, Total as P	0.05	mg/L		0.01		E365.1	09/30/11 13:28 / reh
METALS, DISSOLVED							
Calcium	560	mg/L		1		E200.7	09/19/11 18:24 / sld
Magnesium	59	mg/L		1		E200.7	09/19/11 18:24 / sld
Potassium	15	mg/L		1		E200.7	09/19/11 18:24 / sld
Sodium	475	mg/L		1		E200.7	09/19/11 18:24 / sld
METALS, TOTAL RECOVERABLE							
Arsenic	0.134	mg/L		0.005		E200.8	09/20/11 17:05 / dck
Barium	0.018	mg/L		0.005		E200.8	09/20/11 17:05 / dck
Cadmium	0.00033	mg/L		80000.0		E200.8	09/20/11 17:05 / dck
Copper	0.03	mg/L		0.01		E200.8	09/20/11 17:05 / dck
Iron	0.75	mg/L		0.03		E200.8	09/20/11 17:05 / dck
Manganese	0.26	mg/L		0.01		E200.8	09/20/11 17:05 / dck
Selenium	0.069	mg/L		0.005		E200.8	09/20/11 17:05 / dck
Silicon	7.5	mg/L		0.1		E200.8	09/20/11 17:05 / dck
Silver	ND	mg/L		0.0005		E200.8	09/20/11 17:05 / dck
Strontium	3.5	mg/L		0.1		E200.8	09/20/11 17:05 / dck

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

 $\ensuremath{\mathsf{D}}$ - $\ensuremath{\mathsf{RL}}$ increased due to sample matrix.

Prepared by Helena, MT Branch

 Client:
 Tetra Tech Inc
 Report Date:
 10/13/11

 Project:
 Beal Mtn Mine
 Collection Date:
 09/14/11 18:10

 Lab ID:
 H11090249-002
 DateReceived:
 09/15/11

 Client Sample ID
 Sump-3A
 Matrix:
 Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL PROPERTIES							
рН	8.3	s.u.		0.1		A4500-H B	09/16/11 16:04 / zeg
Conductivity	16300	umhos/cm		1		A2510 B	09/18/11 19:25 / cmm
Solids, Total Dissolved TDS @ 180 C	8670	mg/L		10		A2540 C	09/16/11 11:54 / cmm
INORGANICS							
Cyanide, Total	5.5	mg/L	D	0.1		Kelada mod	09/26/11 12:39 / eli-b
Thiocyanate as N	0.15	mg/L		0.048		A4500-CN M	09/22/11 09:30 / eli-b1
Alkalinity, Total as CaCO3	140	mg/L		4		A2320 B	09/16/11 16:04 / zeg
Chloride	420	mg/L	D	20		E300.0	09/22/11 01:47 / zeg
Sulfate	4600	mg/L	D	100		E300.0	09/22/11 01:47 / zeg
Cyanide, Weak Acid Dissociable	1.58	mg/L	D	0.04		D2036C	09/26/11 14:35 / eli-b
Thiocyanate	0.64	mg/L		0.20		A4500-CN M	09/22/11 09:30 / eli-b1
Fluoride	0.6	mg/L		0.1	4	A4500-F C	09/26/11 15:39 / zeg
NUTRIENTS							
Nitrogen, Nitrate+Nitrite as N	129	mg/L	D	1		E353.2	09/19/11 12:52 / reh
Nitrogen, Ammonia as N	25	mg/L	D	1		E350.1	09/28/11 10:22 / reh
Nitrogen, Nitrite as N	19	mg/L	D	2		E353.2	09/15/11 15:21 / reh
Phosphorus, Total as P	0.63	mg/L		0.01		E365.1	09/30/11 13:29 / reh
METALS, DISSOLVED							
Calcium	1240	mg/L		1		E200.7	09/19/11 18:28 / sld
Magnesium	32	mg/L		1		E200.7	09/19/11 18:28 / sld
Potassium	30	mg/L		1		E200.7	09/19/11 18:28 / sld
Sodium	1680	mg/L		1		E200.7	09/19/11 18:28 / sld
METALS, TOTAL RECOVERABLE							
Arsenic	0.423	mg/L		0.005		E200.8	09/20/11 17:49 / dck
Barium	0.037	mg/L		0.005		E200.8	09/20/11 17:49 / dck
Cadmium	0.00063	mg/L		80000.0		E200.8	09/20/11 17:49 / dck
Copper	0.05	mg/L		0.01		E200.8	09/20/11 17:49 / dck
Iron	1.89	mg/L		0.03		E200.8	09/20/11 17:49 / dck
Manganese	0.17	mg/L		0.01		E200.8	09/20/11 17:49 / dck
Selenium	0.252	mg/L		0.005		E200.8	09/20/11 17:49 / dck
Silicon	10.4	mg/L		0.1		E200.8	09/20/11 17:49 / dck
Silver	ND	mg/L		0.0005		E200.8	09/20/11 17:49 / dck
Strontium	7.2	mg/L		0.1		E200.8	09/20/11 17:49 / dck

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

 $\ensuremath{\mathsf{D}}$ - RL increased due to sample matrix.

Prepared by Helena, MT Branch

 Client:
 Tetra Tech Inc
 Report Date:
 10/13/11

 Project:
 Beal Mtn Mine
 Collection Date:
 09/14/11 06:00

 Lab ID:
 H11090249-003
 DateReceived:
 09/15/11

 Client Sample ID
 Dup-2
 Matrix:
 Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL PROPERTIES							
рН	8.4	s.u.		0.1		A4500-H B	09/16/11 16:11 / zeg
Conductivity	12100	umhos/cm		1		A2510 B	09/18/11 19:26 / cmm
Solids, Total Dissolved TDS @ 180 C	8500	mg/L		10		A2540 C	09/16/11 11:54 / cmm
INORGANICS							
Cyanide, Total	5.5	mg/L	D	0.1		Kelada mod	09/26/11 12:41 / eli-b
Thiocyanate as N	0.14	mg/L		0.048		A4500-CN M	09/22/11 09:30 / eli-b1
Alkalinity, Total as CaCO3	140	mg/L		4		A2320 B	09/16/11 16:11 / zeg
Chloride	430	mg/L	D	20		E300.0	09/22/11 02:28 / zeg
Sulfate	4800	mg/L	D	100		E300.0	09/22/11 19:05 / zeg
Cyanide, Weak Acid Dissociable	2.01	mg/L	D	0.04		D2036C	09/26/11 14:37 / eli-b
Thiocyanate	0.57	mg/L		0.20		A4500-CN M	09/22/11 09:30 / eli-b1
Fluoride	0.6	mg/L		0.1	4	A4500-F C	09/26/11 15:41 / zeg
NUTRIENTS							
Nitrogen, Nitrate+Nitrite as N	124	mg/L	D	1		E353.2	09/19/11 12:53 / reh
Nitrogen, Ammonia as N	25	mg/L	D	1		E350.1	09/28/11 10:23 / reh
Nitrogen, Nitrite as N	20	mg/L	D	2		E353.2	09/15/11 15:22 / reh
Phosphorus, Total as P	0.66	mg/L		0.01		E365.1	09/30/11 13:30 / reh
METALS, DISSOLVED							
Calcium	1230	mg/L		1		E200.7	09/19/11 18:40 / sld
Magnesium	32	mg/L		1		E200.7	09/19/11 18:40 / sld
Potassium	30	mg/L		1		E200.7	09/19/11 18:40 / sld
Sodium	1690	mg/L		1		E200.7	09/19/11 18:40 / sld
METALS, TOTAL RECOVERABLE							
Arsenic	0.423	mg/L		0.005		E200.8	10/10/11 20:05 / dck
Barium	0.034	mg/L		0.005		E200.8	10/10/11 20:05 / dck
Cadmium	0.00050	mg/L		80000.0		E200.8	10/10/11 20:05 / dck
Copper	0.05	mg/L		0.01		E200.8	10/10/11 20:05 / dck
Iron	1.78	mg/L		0.03		E200.8	10/10/11 20:05 / dck
Manganese	0.16	mg/L		0.01		E200.8	10/10/11 20:05 / dck
Selenium	0.257	mg/L		0.005		E200.8	10/10/11 20:05 / dck
Silicon	11.7	mg/L		0.1		E200.8	10/12/11 02:27 / dck
Silver	ND	mg/L		0.0005		E200.8	10/10/11 20:05 / dck
Strontium	7.2	mg/L		0.1		E200.8	10/12/11 21:36 / dck

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

 $\ensuremath{\mathsf{D}}$ - RL increased due to sample matrix.

Prepared by Helena, MT Branch

Client:Tetra Tech IncReport Date:10/13/11Project:Beal Mtn MineWork Order:H11090249

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: A2320 B									Batch	n: R74414
Sample ID: MBLK	Meth	nod Blank				Run: MAN-	ΓΕCH_110915B		09/15	/11 16:40
Alkalinity, Total as CaCO3		ND	mg/L	2						
Sample ID: LCS-09152011	Labo	oratory Con	trol Sample			Run: MAN-	ΓΕCH_110915B		09/15	/11 16:47
Alkalinity, Total as CaCO3		610	mg/L	4.0	101	90	110			
Sample ID: H11090249-001BMS	Sam	ple Matrix S	Spike			Run: MAN-	ΓΕCH_110915B		09/16	/11 01:52
Alkalinity, Total as CaCO3		730	mg/L	4.0	78	80	120			S
Sample ID: H11090192-001ADUP	Sam	ple Duplica	ite			Run: MAN-	ΓΕCH_110915B		09/16	/11 02:07
Alkalinity, Total as CaCO3		300	mg/L	4.0				2.5	10	
Method: A2320 B									Batch	n: R74475
Sample ID: MBLK	Meth	nod Blank				Run: MAN-	TECH_110916B		09/16	/11 15:49
Alkalinity, Total as CaCO3		ND	mg/L	2						
Sample ID: LCS-09152011	Labo	oratory Con	trol Sample			Run: MAN-	ΓΕCH_110916B		09/16	/11 15:57
Alkalinity, Total as CaCO3		600	mg/L	4.0	100	90	110			
Sample ID: H11090254-001ADUP	Sam	ple Duplica	ite			Run: MAN-	ΓΕCH_110916B		09/16	/11 16:33
Alkalinity, Total as CaCO3		100	mg/L	4.0				1.7	10	
Sample ID: H11090254-004AMS	Sam	ple Matrix S	Spike			Run: MAN-	TECH_110916B		09/16	/11 17:03
Alkalinity, Total as CaCO3		800	mg/L	4.0	101	80	120			
Sample ID: H11090254-014ADUP	Sam	nple Duplica	ite			Run: MAN-	ΓΕCH_110916B		09/16	/11 18:17
Alkalinity, Total as CaCO3		160	mg/L	4.0				0.2	10	

Qualifiers:

RL - Analyte reporting limit.

S - Spike recovery outside of advisory limits.

Prepared by Helena, MT Branch

Analyte	Count	Result	Units	RL	%BEC	Low Limit	High Limit	RPD	RPDLimit	Qual
•	Count	nesun	Office	1112	/GI ILC	LOW LIIIII	riigii Liiiii	ПГБ	ITPDEIIIII	Quai
Method: A2510 B								Analytical	Run: COND	_110916A
Sample ID: ICV1_110916A	Initi	ial Calibrati	on Verificati	on Standard					09/16	/11 09:15
Conductivity		1040	umhos/cm	1.0	104	90	110			
Method: A2510 B							Е	Batch: 1109	16A-COND-P	ROBE-W
Sample ID: H11090249-001BDUP	Sar	mple Duplic	ate			Run: COND	_110916A		09/16	/11 09:42
Conductivity		3320	umhos/cm	1.0				0.8	10	
Sample ID: H11090263-001ADUP	Sar	mple Duplic	ate			Run: COND	_110916A		09/16	/11 10:29
Conductivity		488	umhos/cm	1.0				0.2	10	
Method: A2510 B								Analytical	Run: COND	_110916B
Sample ID: ICV1_110916A	Initi	ial Calibrati	on Verificati	on Standard					09/18	/11 19:25
Conductivity		25800	umhos/cm	1.0	104	90	110			
Method: A2510 B							E	Batch: 1109	I6A-COND-P	ROBE-W
Sample ID: H11090249-002BDUP	Sar	mple Duplic	ate			Run: COND	_110916B		09/18	/11 19:25
Conductivity		17000	umhos/cm	1.0				4.1	10	

Prepared by Helena, MT Branch

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: A2540 C									Bat	ch: 13877
Sample ID: MB-13877	Meth	nod Blank				Run: ACCU	l-124 (14410200)_110916	09/16	/11 11:52
Solids, Total Dissolved TDS @ 180	0 C	ND	mg/L	3						
Sample ID: LCS-13877 Solids, Total Dissolved TDS @ 186		oratory Cont 1990	trol Sample mg/L	10	100	Run: ACCU	l-124 (14410200 110)_110916	09/16	/11 11:52
Sample ID: H11090238-001CDUF Solids, Total Dissolved TDS @ 180		ple Duplica 82.0	ite mg/L	10		Run: ACCU	-124 (14410200)_110916 2.4	09/16 5	/11 11:53
Sample ID: H11090254-002AMS Solids, Total Dissolved TDS @ 180		ple Matrix 9 2250	Spike mg/L	10	100	Run: ACCU 80	l-124 (14410200 120)_110916	09/16	/11 11:55
Sample ID: H11090254-010ADUF Solids, Total Dissolved TDS @ 180		ple Duplica 600	ite mg/L	10		Run: ACCU	-124 (14410200)_110916 4.8	09/16 5	/11 12:45

Prepared by Helena, MT Branch

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: A4500-CN M								Analytic	cal Run: SUB	-B172918
Sample ID: ICV-R172918	2 Init	ial Calibratio	n Verification	Standard					09/22	/11 09:30
Thiocyanate		5.1	mg/L	0.20	101	90	110			
Thiocyanate as N		1.2	mg/L	0.048	102	90	110			
Method: A4500-CN M									Batch: B	R172918
Sample ID: H11090249-001E	2 Sa	mple Matrix	Spike			Run: SUB-E	3172918		09/22	/11 09:30
Thiocyanate		5.1	mg/L	0.20	95	80	120			
Thiocyanate as N		1.2	mg/L	0.048	95	80	120			
Sample ID: H11090249-001E	2 Sa	mple Matrix :	Spike Duplica	te		Run: SUB-E	3172918		09/22	/11 09:30
Thiocyanate		5.4	mg/L	0.20	101	80	120	5.5	10	
Thiocyanate as N		1.3	mg/L	0.048	101	80	120	5.5	10	
Sample ID: MB-R172918	2 Me	thod Blank				Run: SUB-E	3172918		09/22	/11 09:30
Thiocyanate		ND	mg/L	0.04						
Thiocyanate as N		ND	mg/L	0.01						

Prepared by Helena, MT Branch

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	A4500-F C								Analyt	ical Run: PH_	_110926A
Sample ID:	ICV1_110926A	Initia	l Calibratio	n Verification S	Standard					09/26/	11 15:33
Fluoride			0.745	mg/L	0.10	99	90	110			
Method:	A4500-F C								Ва	tch: 110926A	-F-ISE-W
Sample ID:	MBLK1_110926A	Meth	nod Blank				Run: PH_11	10926A		09/26/	11 15:30
Fluoride			0.01	mg/L	0.004						
Sample ID:	LFB2_110926A	Labo	oratory Forti	fied Blank			Run: PH_11	10926A		09/26	11 15:35
Fluoride			0.471	mg/L	0.10	91	90	110			
Sample ID:	H11090252-001AMS	Sam	ple Matrix S	Spike			Run: PH_11	10926A		09/26	11 15:58
Fluoride			0.698	mg/L	0.10	84	85	115			S
Sample ID:	H11090252-001AMSI	D Sam	ple Matrix S	Spike Duplicate	e		Run: PH_11	10926A		09/26	11 15:58
Fluoride			0.695	mg/L	0.10	83	85	115	0.4	20	S

Prepared by Helena, MT Branch

Client:Tetra Tech IncReport Date:10/13/11Project:Beal Mtn MineWork Order:H11090249

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	A4500-H B							Analytic	al Run:	MAN-TECH	_110915B
Sample ID:	CCV1-2199	Con	tinuing Calib	ration Ver	ification Standard					09/15	/11 16:22
рН			3.94	s.u.	0.10	99	97	103			
Sample ID:	ICV-2100	Initia	al Calibration	Verification	on Standard					09/15	/11 16:30
рН			7.01	s.u.	0.10	100	98	102			
Sample ID:	CCV-2145	Con	tinuing Calib	oration Ver	ification Standard					09/16	/11 01:23
рН			7.05	s.u.	0.10	101	98	102			
Method:	A4500-H B									Batcl	h: R74414
Sample ID:	CCV3-2042	Con	tinuing Calib	ration Ver	ification Standard		Run: MAN-	ΓΕCH_110915B		09/15	/11 16:28
рН			10.1	s.u.	0.10	101	99	101			
Sample ID:	H11090229-023ADUP	Sam	nple Duplica	te			Run: MAN-	ΓΕCH 110915B		09/16	/11 00:36
рН			7.86	s.u.	0.10			_	0.0	3	
Sample ID:	H11090192-001ADUP	Sam	nple Duplica	te			Run: MAN-	ΓΕCH_110915B		09/16	/11 02:07
рН			8.27	s.u.	0.10				0.0	3	
Method:	A4500-H B							Analytic	al Run:	MAN-TECH	_110916B
Sample ID:	CCV1-2199	Con	tinuing Calib	ration Ver	ification Standard					09/16	/11 15:31
рН			3.91	s.u.	0.10	98	97	103			
Sample ID:	CCV-2145	Con	tinuing Calib	ration Ver	ification Standard					09/16	/11 15:34
рН			7.01	s.u.	0.10	100	98	102			
Sample ID:	ICV-2100	Initia	al Calibration	Verification	on Standard					09/16	/11 15:40
рН			6.97	s.u.	0.10	100	98	102			
Method:	A4500-H B									Batcl	h: R74475
Sample ID:	CCV3-2042	Con	tinuing Calib	ration Ver	ification Standard		Run: MAN-	ΓΕCH_110916B		09/16	/11 15:37
рН			10.0	s.u.	0.10	100	99	101			
Sample ID:	H11090254-001ADUP	Sam	nple Duplica	te			Run: MAN-	ΓΕCH_110916B		09/16	/11 16:33
рН			7.66	s.u.	0.10				0.8	3	
Sample ID:	H11090254-014ADUP	Sam	nple Duplica	te			Run: MAN-	ΓΕCH_110916B		09/16	/11 18:17
рН			7.90	s.u.	0.10				0.1	3	

Qualifiers:

RL - Analyte reporting limit.

Prepared by Helena, MT Branch

Analyte	Count Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: D2036C								Batch:	B_57335
Sample ID: B11091202-008AMSE	Sample Matrix	Spike Duplicate			Run: SUB-E	3173149		09/26/	/11 14:16
Cyanide, Weak Acid Dissociable	0.119	mg/L	0.0050	113	80	120	6.7	10	
Sample ID: LCS-57335	Laboratory Con	trol Sample			Run: SUB-E	3173149		09/26	/11 14:06
Cyanide, Weak Acid Dissociable	0.102	mg/L	0.0050	102	90	110			
Sample ID: MB-57335	Method Blank				Run: SUB-E	3173149		09/26	/11 14:08
Cyanide, Weak Acid Dissociable	ND	mg/L	0.003						
Sample ID: B11091202-008AMS	Sample Matrix	Spike			Run: SUB-E	3173149		09/26	/11 14:14
Cyanide, Weak Acid Dissociable	0.111	mg/L	0.0050	105	80	120			

Prepared by Helena, MT Branch

Client:Tetra Tech IncReport Date:10/13/11Project:Beal Mtn MineWork Order:H11090249

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD RPDLimi	t Qual
Method:	E200.7							An	nalytical Run: ICP2-F	IE_110919E
Sample ID: I	CV	4	nitial Calibration	n Verification Sta	andard				09/	19/11 11:42
Calcium			38.8	mg/L	1.0	97	95	105		
Magnesium			38.4	mg/L	1.0	96	95	105		
Potassium			38.9	mg/L	1.0	97	95	105		
Sodium			39.2	mg/L	1.0	98	95	105		
Sample ID: 0	CCV-1	4 (Continuing Cali	bration Verificati	on Standard				09/	19/11 11:46
Calcium			24.6	mg/L	1.0	98	95	105		
Magnesium			24.2	mg/L	1.0	97	95	105		
Potassium			24.6	mg/L	1.0	98	95	105		
Sodium			24.7	mg/L	1.0	99	95	105		
Sample ID: I	CSA	4	nterference Ch	eck Sample A					09/	19/11 11:57
Calcium			447	mg/L	1.0	89	80	120		
Magnesium			495	mg/L	1.0	99	80	120		
Potassium			-0.00138	mg/L	1.0		0	0		
Sodium			0.0384	mg/L	1.0		0	0		
Sample ID: I	CSAB	4	nterference Ch	eck Sample AB					09/	19/11 12:01
Calcium			451	mg/L	1.0	90	80	120		
Magnesium			498	mg/L	1.0	100	80	120		
Potassium			21.0	mg/L	1.0	105	80	120		
Sodium			21.0	mg/L	1.0	105	80	120		
Sample ID: (ccv	4 (Continuing Cali	bration Verificati	on Standard				09/	19/11 18:06
Calcium			26.5	mg/L	1.0	106	90	110		
Magnesium			25.3	mg/L	1.0	101	90	110		
Potassium			23.7	mg/L	1.0	95	90	110		
Sodium			23.4	mg/L	1.0	93	90	110		
Method:	E200.7								Ba	tch: R74514
Sample ID: I	СВ	4 N	Method Blank				Run: ICP2-I	HE_110919B	09/	19/11 12:08
Calcium			0.0404	mg/L	1.0					
Magnesium			0.0129	mg/L	1.0					
Potassium			ND	mg/L	1.0					
Sodium			ND	mg/L	1.0					
Sample ID: L	-FB	4 L	_aboratory Forti	fied Blank			Run: ICP2-l	HE_110919B	09/	19/11 12:12
Calcium			45.1	mg/L	1.0	90	85	115		
Magnesium			44.5	mg/L	1.0	89	85	115		
Potassium			46.0	mg/L	1.0	92	85	115		
Sodium			46.6	mg/L	1.0	93	85	115		
Sample ID: H	H11090249-002CMS2	4 5	Sample Matrix S	Spike			Run: ICP2-I	HE_110919B	09/	19/11 18:32
Calcium			1290	mg/L	1.0		70	130		Α
Magnesium			127	mg/L	1.0	96	70	130		
Potassium			125	mg/L	1.0	95	70	130		

Qualifiers:

RL - Analyte reporting limit.

A - The analyte level was greater than four times the spike level. In accordance with the method % recovery is not calculated.

Prepared by Helena, MT Branch

Client:Tetra Tech IncReport Date:10/13/11Project:Beal Mtn MineWork Order:H11090249

Analyte	Cour	nt Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E200.7									Batcl	n: R74514
Sample ID: H11090249-002CMS	2 4	Sample Matrix	Spike			Run: ICP2-I	HE_110919B		09/19	/11 18:32
Sodium		1770	mg/L	1.0		70	130			Α
Sample ID: H11090249-002CMS	D2 4	Sample Matrix	Spike Duplicate			Run: ICP2-l	HE_110919B		09/19	/11 18:36
Calcium		1310	mg/L	1.0		70	130	1.4	20	Α
Magnesium		130	mg/L	1.0	98	70	130	1.8	20	
Potassium		124	mg/L	1.0	94	70	130	0.8	20	
Sodium		1760	mg/L	1.0		70	130	0.5	20	Α
Sample ID: MB-13842	4	Method Blank				Run: ICP2-l	HE_110919B		09/20	/11 01:34
Calcium		0.09	mg/L	0.008						
Magnesium		0.02	mg/L	0.003						
Potassium		0.2	mg/L	0.04						
Sodium		0.06	mg/L	0.01						

Qualifiers:

RL - Analyte reporting limit.

A - The analyte level was greater than four times the spike level. In accordance with the method % recovery is not calculated.

Prepared by Helena, MT Branch

Client:Tetra Tech IncReport Date:10/13/11Project:Beal Mtn MineWork Order:H11090249

Analyte	Count Res	ult Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E200.8						Analyti	ical Run:	ICPMS204-B	_110920A
Sample ID: ICV STD	10 Initial Calil	oration Verificat	tion Standard					09/20	/11 10:23
Arsenic	0.05	512 mg/L	0.0050	102	90	110			
Barium	0.05	510 mg/L	0.10	102	90	110			
Cadmium	0.02	265 mg/L	0.0010	106	90	110			
Copper	0.05	513 mg/L	0.010	103	90	110			
Iron	0.2	259 mg/L	0.030	104	90	110			
Manganese	0.2	252 mg/L	0.010	101	90	110			
Selenium	0.05	520 mg/L	0.0050	104	90	110			
Silicon	0.5	522 mg/L	0.10	104	90	110			
Silver	0.02	248 mg/L	0.0050	99	90	110			
Strontium	0.04	189 mg/L	0.10	98	90	110			
Sample ID: ICSA	10 Interference	ce Check Samp	ole A					09/20	/11 10:27
Arsenic	0.0001	88 mg/L	0.0050						
Barium	0.0001	64 mg/L	0.10						
Cadmium	0.0003	35 mg/L	0.0010						
Copper	0.0004	l22 mg/L	0.010						
Iron	1	01 mg/L	0.030	101	70	130			
Manganese	0.002	217 mg/L	0.010						
Selenium	0.0001	92 mg/L	0.0050						
Silicon	0.004	114 mg/L	0.10		0	0			
Silver	0.0002	223 mg/L	0.0050						
Strontium	0.005	572 mg/L	0.10						
Sample ID: ICSAB	10 Interference	ce Check Samp	ole AB					09/20	/11 10:31
Arsenic	0.01	04 mg/L	0.0050	104	70	130			
Barium	0.0001	61 mg/L	0.10		0	0			
Cadmium	0.01	04 mg/L	0.0010	104	70	130			
Copper	0.02	205 mg/L	0.010	102	70	130			
Iron	1	01 mg/L	0.030	101	70	130			
Manganese	0.02	228 mg/L	0.010	114	70	130			
Selenium	0.01	04 mg/L	0.0050	104	70	130			
Silicon	0.003	884 mg/L	0.10		0	0			
Silver	0.01	98 mg/L	0.0050	99	70	130			
Strontium	0.005	553 mg/L	0.10		0	0			
Sample ID: ICV STD	10 Initial Calil	oration Verificat	tion Standard					09/20	/11 16:02
Arsenic	0.05	•	0.0050	102	90	110			
Barium	0.05	•	0.10	101	90	110			
Cadmium	0.02	•	0.0010	108	90	110			
Copper	0.05	525 mg/L	0.010	105	90	110			
Iron	0.2	267 mg/L	0.030	107	90	110			
Manganese	0.2	255 mg/L	0.010	102	90	110			
Selenium	0.05	533 mg/L	0.0050	107	90	110			
Silicon	0.5	514 mg/L	0.10	103	90	110			
Silver	0.02	244 mg/L	0.0050	98	90	110			

Qualifiers:

RL - Analyte reporting limit.

Prepared by Helena, MT Branch

Client:Tetra Tech IncReport Date:10/13/11Project:Beal Mtn MineWork Order:H11090249

Analyte	Count Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E200.8						Analyti	cal Run:	ICPMS204-B	_110920A
Sample ID: ICV STD	10 Initial Calibration	on Verification	Standard					09/20	/11 16:02
Strontium	0.0502	mg/L	0.10	100	90	110			
Sample ID: ICSA	10 Interference C	heck Sample A	A					09/20	/11 16:06
Arsenic	0.000171	mg/L	0.0050						
Barium	0.000165	mg/L	0.10						
Cadmium	0.000408	mg/L	0.0010						
Copper	0.000449	mg/L	0.010						
Iron	102	mg/L	0.030	102	70	130			
Manganese	0.00212	mg/L	0.010						
Selenium	0.000383	mg/L	0.0050						
Silicon	0.00396	mg/L	0.10		0	0			
Silver	0.000131	mg/L	0.0050						
Strontium	0.00574	mg/L	0.10						
Sample ID: ICSAB	10 Interference C	heck Sample A	AB					09/20	/11 16:11
Arsenic	0.0106	mg/L	0.0050	106	70	130			
Barium	0.000160	mg/L	0.10		0	0			
Cadmium	0.0103	mg/L	0.0010	103	70	130			
Copper	0.0205	mg/L	0.010	102	70	130			
Iron	103	mg/L	0.030	103	70	130			
Manganese	0.0227	mg/L	0.010	113	70	130			
Selenium	0.0104	mg/L	0.0050	104	70	130			
Silicon	0.00379	mg/L	0.10		0	0			
Silver	0.0198	mg/L	0.0050	99	70	130			
Strontium	0.00567	mg/L	0.10		0	0			
Sample ID: ICV STD	10 Initial Calibration	on Verification	Standard					09/20	/11 23:36
Arsenic	0.0514	mg/L	0.0050	103	90	110			
Barium	0.0515	mg/L	0.10	103	90	110			
Cadmium	0.0268	mg/L	0.0010	107	90	110			
Copper	0.0530	mg/L	0.010	106	90	110			
Iron	0.260	mg/L	0.030	104	90	110			
Manganese	0.251	mg/L	0.010	100	90	110			
Selenium	0.0516	mg/L	0.0050	103	90	110			
Silicon	0.504	mg/L	0.10	101	90	110			
Silver	0.0257	mg/L	0.0050	103	90	110			
Strontium	0.0497	mg/L	0.10	99	90	110			
Sample ID: ICSA	10 Interference C	heck Sample A	A					09/20	/11 23:40
Arsenic	0.000173	mg/L	0.0050						
Barium	0.000176	mg/L	0.10						
Cadmium	0.000371	mg/L	0.0010						
Copper	0.000433	mg/L	0.010						
Iron	97.7	mg/L	0.030	98	70	130			
Manganese	0.00211	mg/L	0.010						

Qualifiers:

RL - Analyte reporting limit.

Prepared by Helena, MT Branch

Client:Tetra Tech IncReport Date:10/13/11Project:Beal Mtn MineWork Order:H11090249

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E200.8							Analytic	al Run:	ICPMS204-B	_110920/
Sample ID: ICSA	10 Inte	rference Ch	neck Sample A						09/20	/11 23:40
Selenium		0.000294	mg/L	0.0050						
Silicon		0.00372	mg/L	0.10		0	0			
Silver		0.000176	mg/L	0.0050						
Strontium		0.00566	mg/L	0.10						
Sample ID: ICSAB	10 Inte	rference Ch	neck Sample Al	3					09/20	/11 23:44
Arsenic		0.0105	mg/L	0.0050	105	70	130			
Barium		0.000158	mg/L	0.10		0	0			
Cadmium		0.00998	mg/L	0.0010	100	70	130			
Copper		0.0203	mg/L	0.010	102	70	130			
Iron		98.7	mg/L	0.030	99	70	130			
Manganese		0.0226	mg/L	0.010	113	70	130			
Selenium		0.00996	mg/L	0.0050	100	70	130			
Silicon		0.00343	mg/L	0.10		0	0			
Silver		0.0206	mg/L	0.0050	103	70	130			
Strontium		0.00559	mg/L	0.10		0	0			
Method: E200.8									Bat	ch: 1391
Sample ID: MB-13913	10 Met	hod Blank				Run: ICPM	S204-B_110920A		09/20	/11 17:14
Arsenic		7E-05	mg/L	5E-05						
Barium		ND	mg/L	9E-05						
Cadmium		ND	mg/L	2E-05						
Copper		ND	mg/L	0.0004						
Iron		0.002	mg/L	0.0006						
Manganese		6E-05	mg/L	6E-05						
Selenium		ND	mg/L	0.0002						
Silicon		0.005	mg/L	0.0008						
Silver		ND	mg/L	6E-05						
Strontium		9E-05	mg/L	4E-05						
Sample ID: LCS-13913	10 Lab	oratory Con	trol Sample			Run: ICPM	S204-B_110920A	<u>.</u>	09/20	/11 17:18
Arsenic		0.506	mg/L	0.0050	101	85	115			
Barium		0.477	mg/L	0.10	95	85	115			
Cadmium		0.238	mg/L	0.0010	95	85	115			
Copper		0.508	mg/L	0.010	102	85	115			
Iron		2.57	mg/L	0.030	103	85	115			
Manganese		2.49	mg/L	0.010	100	85	115			
Selenium		0.518	mg/L	0.0050	104	85	115			
Silicon		4.85	mg/L	0.10	97	85	115			
Silver		0.0513	mg/L	0.0050	103	85	115			
Strontium		0.488	mg/L	0.10	98	85	115			
Sample ID: H11090249-002DN	183 10 San	nple Matrix	Spike			Run: ICPM	S204-B_110920A	L	09/20	/11 17:54
Arsenic		1.01	mg/L	0.0050	117	70	130			
Barium		0.574	mg/L	0.10	107	70	130			

Qualifiers:

RL - Analyte reporting limit.

Prepared by Helena, MT Branch

Client:Tetra Tech IncReport Date:10/13/11Project:Beal Mtn MineWork Order:H11090249

E200.8								Bat	ch: 13913
H11090249-002DMS3	10 Sample Matri	ix Spike			Run: ICPMS	S204-B_110920A		09/20	/11 17:54
	0.261	mg/L	0.0010	104	70	130			
	0.561	mg/L	0.010	102	70	130			
	4.65	mg/L	0.030	111	70	130			
	2.71	mg/L	0.010	101	70	130			
	0.830	mg/L	0.0050	116	70	130			
	16.4	mg/L	0.10	121	70	130			
	0.0438	mg/L	0.0050	88	70	130			
	7.93	mg/L	0.10		70	130			Α
H11090249-002DMSD	3 10 Sample Matri	ix Spike Duplica	ate		Run: ICPMS	S204-B_110920A		09/20	/11 17:58
	1.01	mg/L	0.0050	117	70	130	0.0	20	
	0.561	mg/L	0.10	105	70	130	2.2	20	
	0.253	mg/L	0.0010	101	70	130	3.0	20	
	0.557	′ mg/L	0.010	101	70	130	0.7	20	
	4.57	′ mg/L	0.030	107	70	130	1.8	20	
	2.72	e mg/L	0.010	102	70	130	0.4	20	
	0.810	mg/L	0.0050	112	70	130	2.6	20	
	16.1	mg/L	0.10	113	70	130	2.2	20	
	0.0471	mg/L	0.0050	94	70	130	7.2	20	
	7.92	e mg/L	0.10		70	130	0.2	20	Α
E200.8								Batch	h: R74556
ICB	10 Method Blanl	Κ.			Run: ICPMS	S204-B_110920A		09/20	/11 11:28
	ND	mg/L	3E-05						
	ND	mg/L	3E-05						
	ND	mg/L	1E-05						
	ND	mg/L	3E-05						
	0.0005	mg/L	0.0002						
	ND	mg/L	1E-05						
	ND	mg/L	4E-05						
	ND	mg/L	0.0006						
	ND	mg/L	3E-05						
	ND	mg/L	7E-06						
LFB	10 Laboratory Fo	ortified Blank			Run: ICPMS	S204-B_110920A		09/20	/11 11:32
	0.0511	mg/L	0.0050	102	85	115			
	0.0506	mg/L	0.10	101	85	115			
	0.0482	e mg/L	0.0010	96	85	115			
	0.0484	mg/L	0.010	97	85	115			
	4.95	mg/L	0.030	99	85	115			
	0.0498	mg/L	0.010	100	85	115			
	0.0499	mg/L	0.0050	100	85	115			
	0.211	mg/L	0.10	106	85	115			
	0.0100	, ma/l	0.0050	96	85	115			
	0.0192	e mg/L	0.0050	90	00	113			
	H11090249-002DMSD H11090249-002DMSD E200.8 ICB	H11090249-002DMS3 10 Sample Matri	H11090249-002DMS3	Name	H11090249-002DMS3	Name	H11090249-002DMS3	H11090249-002DMS31	H11090249-002DMS3

Qualifiers:

RL - Analyte reporting limit.

A - The analyte level was greater than four times the spike level. In accordance with the method % recovery is not calculated.

Prepared by Helena, MT Branch

Client:Tetra Tech IncReport Date:10/13/11Project:Beal Mtn MineWork Order:H11090249

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E200.8									Batcl	h: R74556
Sample ID: LFB	10 Lab	oratory Fort	ified Blank			Run: ICPMS	S204-B_110920A		09/20	/11 11:32
Sample ID: H11090229-024BM	S 10 San	nple Matrix	Spike			Run: ICPMS	S204-B_110920A		09/20	/11 16:51
Arsenic		0.0528	mg/L	0.0050	104	70	130			
Barium		0.0873	mg/L	0.10	97	70	130			
Cadmium		0.0470	mg/L	0.0010	94	70	130			
Copper		0.0490	mg/L	0.010	96	70	130			
Iron		4.91	mg/L	0.030	98	70	130			
Manganese		0.394	mg/L	0.010		70	130			Α
Selenium		0.186	mg/L	0.0050	82	70	130			
Silicon		11.2	mg/L	0.10		70	130			Α
Silver		0.0166	mg/L	0.0050	83	70	130			
Strontium		1.15	mg/L	0.10		70	130			Α
Sample ID: H11090229-024BM	SD 10 San	nole Matrix	Spike Duplica	te		Run: ICPMS	S204-B_110920A		09/20	/11 16:55
Arsenic	- Juli	0.0511	mg/L	0.0050	101	70	130	3.2	20	,
Barium		0.0871	mg/L	0.10	97	70	130	0.2	20	
Cadmium		0.0472	mg/L	0.0010	94	70	130	0.3	20	
Copper		0.0480	mg/L	0.010	94	70	130	2.0	20	
Iron		5.02	mg/L	0.030	100	70 70	130	2.2	20	
Manganese		0.393	mg/L	0.030	100	70 70	130	0.4	20	Α
Selenium		0.393	mg/L	0.0050	83	70 70	130	0.4	20	^
Silicon		11.3	•	0.0030	03	70 70	130	0.4	20	Α
Silver		0.0177	mg/L mg/L	0.0050	89	70 70	130	6.3	20	^
Strontium		1.15	mg/L	0.0030	09	70 70	130	0.3	20	Α
Sample ID: H11090254-031BM	S 10 San	nple Matrix	Snika			Run: ICPM9	S204-B_110920A		09/20	/11 19:18
Arsenic	io can	0.0567	mg/L	0.0050	98	70	130		03/20	, 11 15.10
Barium		0.0307	•	0.0030	95	70 70	130			
Cadmium		0.0491	mg/L	0.0010	98	70 70	130			
		0.0491	mg/L							
Copper			mg/L	0.010	94	70 70	130			
Iron		4.94	mg/L	0.030	99	70 70	130			
Manganese		0.0494	mg/L	0.010	99	70 70	130			
Selenium		0.0531	mg/L	0.0050	105	70	130			
Silicon		20.4	mg/L	0.10	00	70	130			Α
Silver Strontium		0.0183 0.253	mg/L mg/L	0.0050 0.10	92	70 70	130 130			Α
	CD 10.0		-						00/00	
Sample ID: H11090254-031BM Arsenic	10 San	npie iviatrix 0.0574	Spike Duplica mg/L	te 0.0050	100	Run: ICPMS	S204-B_110920A 130	1.1	09/20 20	/11 19:40
Barium		0.0826	mg/L	0.0030	97	70 70	130		20	
Cadmium		0.0498	mg/L	0.0010	100	70 70	130	1.3	20	
Copper		0.0498	mg/L	0.0010	94	70 70	130	0.9	20	
Iron		4.98		0.010	100	70 70	130	0.9	20	
			mg/L							
Manganese		0.0498	mg/L	0.010	99	70	130	0.8	20	
Selenium		0.0531	mg/L	0.0050	105	70	130	0.0	20	

Qualifiers:

RL - Analyte reporting limit.

A - The analyte level was greater than four times the spike level. In accordance with the method % recovery is not calculated.

Prepared by Helena, MT Branch

Analyte	Cour	nt Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E20	8.00								Batch	n: R74556
Sample ID: H11	090254-031BMSD 10	Sample Matrix S	Spike Duplicate			Run: ICPMS	S204-B_110920A		09/20/	11 19:40
Silicon		20.7	mg/L	0.10		70	130	1.2	20	Α
Silver		0.0185	mg/L	0.0050	93	70	130	1.1	20	
Strontium		0.258	mg/L	0.10		70	130	1.7	20	Α

Prepared by Helena, MT Branch

Client:Tetra Tech IncReport Date:10/13/11Project:Beal Mtn MineWork Order:H11090249

Analyte	Count Res	ult Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E200.8						Analyt	ical Run: I	CPMS204-B	_111010A
Sample ID: ICV STD	9 Initial Cali	bration Verificat	tion Standard					10/10	/11 10:36
Arsenic	0.0	497 mg/L	0.0050	99	90	110			
Barium	0.0	497 mg/L	0.10	99	90	110			
Cadmium	0.0	262 mg/L	0.0010	105	90	110			
Copper	0.0	512 mg/L	0.010	102	90	110			
Iron	0.3	254 mg/L	0.030	102	90	110			
Manganese	0.3	256 mg/L	0.010	102	90	110			
Selenium	0.0	508 mg/L	0.0050	102	90	110			
Silicon	0.4	496 mg/L	0.10	99	90	110			
Silver	0.02	245 mg/L	0.0050	98	90	110			
Sample ID: ICSA	9 Interferen	ce Check Samp	ole A					10/10	/11 10:41
Arsenic	0.000	137 mg/L	0.0050						
Barium	0.000	122 mg/L	0.10						
Cadmium	0.000	576 mg/L	0.0010						
Copper	0.000	355 mg/L	0.010						
Iron	9	6.6 mg/L	0.030	97	70	130			
Manganese	0.00	189 mg/L	0.010						
Selenium	0.000	128 mg/L	0.0050						
Silicon	0.003	392 mg/L	0.10		0	0			
Silver	7.50E	-05 mg/L	0.0050						
Sample ID: ICSAB	9 Interferen	ce Check Samp	ole AB					10/10	/11 10:45
Arsenic	0.0	102 mg/L	0.0050	102	70	130			
Barium	0.000	130 mg/L	0.10		0	0			
Cadmium	0.009	982 mg/L	0.0010	98	70	130			
Copper	0.0	198 mg/L	0.010	99	70	130			
Iron	9	7.1 mg/L	0.030	97	70	130			
Manganese	0.0	213 mg/L	0.010	107	70	130			
Selenium	0.009	992 mg/L	0.0050	99	70	130			
Silicon	0.003	381 mg/L	0.10		0	0			
Silver	0.0	192 mg/L	0.0050	96	70	130			
Sample ID: ICV STD	9 Initial Cali	bration Verificat	tion Standard					10/10	/11 18:29
Arsenic	0.0	508 mg/L	0.0050	102	90	110			
Barium	0.0		0.10	102	90	110			
Cadmium	0.0	264 mg/L	0.0010	106	90	110			
Copper	0.0	526 mg/L	0.010	105	90	110			
Iron	0.3	250 mg/L	0.030	100	90	110			
Manganese	0.2	253 mg/L	0.010	101	90	110			
Selenium	0.04		0.0050	99	90	110			
Silicon	0.4	479 mg/L	0.10	96	90	110			
Silver	0.02	-	0.0050	98	90	110			
Sample ID: ICSA	9 Interferen	ce Check Samp	ole A					10/10	/11 18:33
Arsenic	0.000		0.0050						

Qualifiers:

RL - Analyte reporting limit.

Prepared by Helena, MT Branch

Client:Tetra Tech IncReport Date:10/13/11Project:Beal Mtn MineWork Order:H11090249

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E200.8							Analyti	cal Run: I	CPMS204-B	_111010A
Sample ID: ICSA	9 Interfe	erence Che	eck Sample A						10/10	/11 18:33
Barium	0.0	000126	mg/L	0.10						
Cadmium	0.0	000687	mg/L	0.0010						
Copper	0.0	000406	mg/L	0.010						
Iron		94.5	mg/L	0.030	94	70	130			
Manganese	C	0.00174	mg/L	0.010						
Selenium	0.	000137	mg/L	0.0050						
Silicon	C	0.00459	mg/L	0.10		0	0			
Silver	5.	00E-05	mg/L	0.0050						
Sample ID: ICSAB	9 Interfe	erence Che	eck Sample AB						10/10	/11 18:38
Arsenic		0.0103	mg/L	0.0050	103	70	130			
Barium	8.	20E-05	mg/L	0.10		0	0			
Cadmium	C	0.00995	mg/L	0.0010	99	70	130			
Copper		0.0202	mg/L	0.010	101	70	130			
Iron		97.7	mg/L	0.030	98	70	130			
Manganese		0.0201	mg/L	0.010	101	70	130			
Selenium		0.0101	mg/L	0.0050	101	70	130			
Silicon	C	0.00363	mg/L	0.10		0	0			
Silver		0.0189	mg/L	0.0050	95	70	130			
Sample ID: ICV STD	9 Initial	Calibration	Verification Sta	ndard					10/12	/11 01:51
Arsenic		0.0492	mg/L	0.0050	98	90	110			
Barium		0.0505	mg/L	0.10	101	90	110			
Cadmium		0.0262	mg/L	0.0010	105	90	110			
Copper		0.0510	mg/L	0.010	102	90	110			
Iron		0.251	mg/L	0.030	100	90	110			
Manganese		0.259	mg/L	0.010	104	90	110			
Selenium		0.0502	mg/L	0.0050	100	90	110			
Silicon		0.486	mg/L	0.10	97	90	110			
Silver		0.0248	mg/L	0.0050	99	90	110			
Sample ID: ICSA	9 Interfe	erence Che	eck Sample A						10/12	/11 01:55
Arsenic	0.	000129	mg/L	0.0050						
Barium	0.0	000220	mg/L	0.10						
Cadmium	0.	000450	mg/L	0.0010						
Copper	0.	000387	mg/L	0.010						
Iron		95.7	mg/L	0.030	96	70	130			
Manganese	C	0.00178	mg/L	0.010						
Selenium	0.	000145	mg/L	0.0050						
Silicon	C	0.00389	mg/L	0.10		0	0			
Silver	0.	000123	mg/L	0.0050						
Sample ID: ICSAB	9 Interfe	erence Che	eck Sample AB						10/12	/11 02:00
Arsenic		0.0104	mg/L	0.0050	104	70	130			
Barium	0	000187	mg/L	0.10		0	0			

Qualifiers:

RL - Analyte reporting limit.

Prepared by Helena, MT Branch

Client:Tetra Tech IncReport Date:10/13/11Project:Beal Mtn MineWork Order:H11090249

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E200.8							Analyti	cal Run:	ICPMS204-B	_111010A
Sample ID: ICSAB	9 Inter	ference Ch	eck Sample A	ΛB					10/12	2/11 02:00
Cadmium		0.00986	mg/L	0.0010	99	70	130			
Copper		0.0202	mg/L	0.010	101	70	130			
Iron		96.6	mg/L	0.030	97	70	130			
Manganese		0.0190	mg/L	0.010	95	70	130			
Selenium		0.0101	mg/L	0.0050	101	70	130			
Silicon		0.00368	mg/L	0.10		0	0			
Silver		0.0186	mg/L	0.0050	93	70	130			
Method: E200.8							Analyti	cal Run:	ICPMS204-B	_111012A
Sample ID: ICV STD	Initia	al Calibratio	n Verification	Standard					10/12	2/11 14:24
Strontium		0.0492	mg/L	0.10	98	90	110			
Sample ID: ICSA	Inter	ference Ch	eck Sample A	١					10/12	2/11 14:29
Strontium		0.00542	mg/L	0.10						
Sample ID: ICSAB	Inter	ference Ch	eck Sample A	ΛB					10/12	2/11 14:33
Strontium		0.00554	mg/L	0.10		0	0			
Sample ID: ICV STD	Initia	al Calibratio	n Verification	Standard					10/12	2/11 20:59
Strontium		0.0470	mg/L	0.10	94	90	110			
Sample ID: ICSA	Inter	ference Ch	eck Sample A	١					10/12	2/11 21:03
Strontium		0.00538	mg/L	0.10						
Sample ID: ICSAB	Inter	ference Ch	eck Sample A	ΛB					10/12	2/11 21:07
Strontium		0.00532	mg/L	0.10		0	0			
Method: E200.8									Bat	tch: 13913
Sample ID: MB-13913	9 Meth	nod Blank				Run: ICPMS	S204-B_111012	Α	10/12	2/11 21:32
Arsenic		ND	mg/L	5E-05						
Barium		ND	mg/L	9E-05						
Cadmium		ND	mg/L	2E-05						
Copper		ND	mg/L	0.0004						
Iron		0.003	mg/L	0.0006						
Manganese		ND	mg/L	6E-05						
Selenium		ND	mg/L	0.0002						
Silver		ND	mg/L	6E-05						
Strontium		5E-05	mg/L	4E-05						

Qualifiers:

RL - Analyte reporting limit.

Prepared by Helena, MT Branch

Client:Tetra Tech IncReport Date:10/13/11Project:Beal Mtn MineWork Order:H11090249

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E300.0							A	Analytical F	Run: IC102-H	_110921A
Sample ID:	ICV092111-12	2 Ir	nitial Calibratio	n Verification	Standard					09/21	/11 15:49
Chloride			110	mg/L	1.0	110	90	110			
Sulfate			420	mg/L	1.0	105	90	110			
Sample ID:	CCV092111-44	2 (Continuing Cal	bration Verifi	cation Standard					09/21	/11 23:04
Chloride			110	mg/L	1.0	109	90	110			
Sulfate			410	mg/L	1.0	103	90	110			
Sample ID:	CCV092111-58	2 (Continuing Cal	bration Verifi	cation Standard					09/22	2/11 02:00
Chloride			110	mg/L	1.0	109	90	110			
Sulfate			420	mg/L	1.0	104	90	110			
Method:	E300.0									Batc	h: R74618
Sample ID:	ICB092111-13	2 N	Method Blank				Run: IC102	-H_110921A		09/21	/11 16:02
Chloride			0.07	mg/L	0.02						
Sulfate			0.2	mg/L	0.02						
Sample ID:	LFB092111-14	2 L	aboratory Fort	ified Blank			Run: IC102	-H_110921A		09/21	/11 16:16
Chloride			52	mg/L	1.0	104	90	110			
Sulfate			200	mg/L	1.1	100	90	110			
Sample ID:	H11090229-026AMS	2 8	Sample Matrix	Spike			Run: IC102	-H_110921A		09/22	/11 00:39
Chloride			77	mg/L	1.0	110	90	110			
Sulfate			310	mg/L	1.1	106	90	110			
Sample ID:	H11090229-026AMSI	2 9	Sample Matrix	Spike Duplica	ate		Run: IC102	-H_110921A		09/22	/11 00:52
Chloride			78	mg/L	1.0	112	90	110	1.3	20	S
Sulfate			310	mg/L	1.1	108	90	110	1.4	20	
Sample ID:	H11090254-001AMS	2 8	Sample Matrix	Spike			Run: IC102	-H_110921A		09/22	/11 03:36
Chloride			62	mg/L	1.0	109	90	110			
Sulfate			290	mg/L	1.1	106	90	110			
Sample ID:	H11090254-001AMSI	2 8	Sample Matrix	Spike Duplica	ate		Run: IC102	-H_110921A		09/22	/11 03:49
Chloride			62	mg/L	1.0	110	90	110	0.6	20	
Sulfate			290	mg/L	1.1	106	90	110	0.1	20	

Qualifiers:

RL - Analyte reporting limit.

S - Spike recovery outside of advisory limits.

Prepared by Helena, MT Branch

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E300.0								Analytical F	un: IC102-H	_110922A
Sample ID:	ICV092211-12	Initi	ial Calibration	n Verification S	Standard					09/22	/11 17:30
Sulfate			420	mg/L	1.0	105	90	110			
Sample ID:	CCV092211-15	Cor	ntinuing Calil	bration Verifica	ation Standard					09/22	/11 18:11
Sulfate			410	mg/L	1.0	103	90	110			
Method:	E300.0									Batch	n: R74653
Sample ID:	ICB092211-13	Met	thod Blank				Run: IC102-	H_110922A		09/22	/11 17:44
Sulfate			ND	mg/L	0.02						
Sample ID:	LFB092211-14	Lab	oratory Forti	fied Blank			Run: IC102-	H_110922A		09/22	/11 17:57
Sulfate			200	mg/L	1.1	101	90	110			
Sample ID:	H11090254-030AMS	Sar	mple Matrix S	Spike			Run: IC102-	H_110922A		09/22	/11 20:13
Sulfate			310	mg/L	1.1	107	90	110			
Sample ID:	H11090254-030AMSI) Sar	mple Matrix S	Spike Duplicate	е		Run: IC102-	H_110922A		09/22	/11 20:27
Sulfate			310	mg/L	1.1	108	90	110	1.1	20	

Prepared by Helena, MT Branch

Client:Tetra Tech IncReport Date:10/13/11Project:Beal Mtn MineWork Order:H11090249

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E350.1							Analy	tical Run	: FIA203-HE	_110922 <i>A</i>
Sample ID: ICV	Initial	Calibratio	n Verification St	andard					09/22	/11 15:54
Nitrogen, Ammonia as N		1.10	mg/L	0.10	110	90	110			
Sample ID: ICB	Initial	Calibratio	n Blank, Instrum	nent Blank					09/22	/11 15:59
Nitrogen, Ammonia as N		-0.0604	mg/L	0.10		0	0			
Method: E350.1									Batcl	h: R74640
Sample ID: LCS	Labor	atory Con	trol Sample			Run: FIA203	B-HE_110922A		09/22	/11 15:55
Nitrogen, Ammonia as N		15.1	mg/L	0.50	96	90	110			
Sample ID: LFB	Labor	atory Fort	ified Blank			Run: FIA203	B-HE_110922A		09/22	/11 15:56
Nitrogen, Ammonia as N		0.963	mg/L	0.10	96	90	110			
Sample ID: MBLK	Metho	od Blank				Run: FIA203	B-HE_110922A		09/22	/11 16:00
Nitrogen, Ammonia as N		ND	mg/L	0.002						
Sample ID: H11090327-001BMS	Samp	ole Matrix S	Spike			Run: FIA203	B-HE_110922A		09/22	/11 17:28
Nitrogen, Ammonia as N		0.907	mg/L	0.10	91	80	120			
Sample ID: H11090327-001BMSD) Samp	ole Matrix S	Spike Duplicate			Run: FIA203	B-HE_110922A		09/22	/11 17:29
Nitrogen, Ammonia as N		0.910	mg/L	0.10	91	80	120	0.4	10	
Method: E350.1							Analy	tical Run	n: FIA203-HE	_110928A
Sample ID: ICV	Initial	Calibratio	n Verification St	andard					09/28	/11 10:15
Nitrogen, Ammonia as N		1.09	mg/L	0.10	109	90	110			
Sample ID: ICB	Initial	Calibratio	n Blank, Instrum	nent Blank					09/28	/11 10:19
Nitrogen, Ammonia as N		-0.0531	mg/L	0.10		0	0			
Method: E350.1									Batch	h: R74794
Sample ID: LCS	Labor	atory Con	trol Sample			Run: FIA203	B-HE_110928A		09/28	/11 10:16
Nitrogen, Ammonia as N		15.1	mg/L	0.50	96	90	110			
Sample ID: LFB	Labor	atory Fort	ified Blank			Run: FIA203	B-HE_110928A		09/28	/11 10:17
Nitrogen, Ammonia as N		0.948	mg/L	0.10	95	90	110			
Sample ID: MBLK	Metho	od Blank				Run: FIA20	B-HE_110928A		09/28	/11 10:21
Nitrogen, Ammonia as N		ND	mg/L	0.002						
Sample ID: H11090428-001AMS	Samp	ole Matrix S	Spike			Run: FIA203	B-HE_110928A		09/28	/11 10:43
Nitrogen, Ammonia as N	·	0.846	mg/L	0.10	85	80	120			
Sample ID: H11090428-001AMSE) Samp	ole Matrix S	Spike Duplicate			Run: FIA203	B-HE_110928A		09/28	/11 10:44
Nitrogen, Ammonia as N	·	0.839	mg/L	0.10	84	80	120	0.9	10	

Qualifiers:

RL - Analyte reporting limit.

Prepared by Helena, MT Branch

Client:Tetra Tech IncReport Date:10/13/11Project:Beal Mtn MineWork Order:H11090249

Analyte	Count Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E353.2						Analy	tical Run	: FIA203-HE	_110915A
Sample ID: ICV	Initial Calibration	n Verification Sta	andard					09/15	/11 15:09
Nitrogen, Nitrite as N	1.03	mg/L	0.050	103	90	110			
Sample ID: CCV	Continuing Cal	ibration Verification	on Standard					09/15	/11 15:13
Nitrogen, Nitrite as N	0.509	mg/L	0.050	102	90	110			
Sample ID: ICB	Initial Calibration	n Blank, Instrum	ent Blank					09/15	/11 15:14
Nitrogen, Nitrite as N	-0.00406	mg/L	0.050		0	0			
Method: E353.2								Batc	h: R74407
Sample ID: LCS	Laboratory Con	trol Sample			Run: FIA20	3-HE_110915A		09/15	/11 15:10
Nitrogen, Nitrite as N	1.02	mg/L	0.050	102	90	110			
Sample ID: MBLK	Method Blank				Run: FIA20	3-HE_110915A		09/15	/11 15:15
Nitrogen, Nitrite as N	ND	mg/L	0.0007						
Sample ID: H11090189-001BMS	Sample Matrix	Spike			Run: FIA20	3-HE_110915A		09/15	/11 15:18
Nitrogen, Nitrite as N	1.02	mg/L	0.050	102	90	110			
Sample ID: H11090189-001BMSE	Sample Matrix	Spike Duplicate			Run: FIA20	3-HE_110915A		09/15	/11 15:19
Nitrogen, Nitrite as N	0.992	mg/L	0.050	99	90	110	2.5	20	
Method: E353.2						Analy	tical Run	: FIA203-HE	_110919B
Sample ID: ICV	Initial Calibration	n Verification Sta	andard					09/19	/11 12:42
Nitrogen, Nitrate+Nitrite as N	1.06	mg/L	0.050	106	90	110			
Sample ID: CCV	Continuing Cal	ibration Verification	on Standard					09/19	/11 12:46
Nitrogen, Nitrate+Nitrite as N	0.510	mg/L	0.050	102	90	110			
Sample ID: ICB	Initial Calibration	n Blank, Instrum	ent Blank					09/19	/11 12:48
Nitrogen, Nitrate+Nitrite as N	-0.00549	mg/L	0.050		0	0			
Method: E353.2								Batc	h: R74507
Sample ID: LCS	Laboratory Con	trol Sample			Run: FIA20	3-HE_110919B		09/19	/11 12:43
Nitrogen, Nitrate+Nitrite as N	25.0	mg/L	0.20	103	90	110			
Sample ID: LFB	Laboratory Fort	ified Blank			Run: FIA20	3-HE_110919B		09/19	/11 12:45
Nitrogen, Nitrate+Nitrite as N	0.995	mg/L	0.050	100	90	110			
Sample ID: MBLK	Method Blank				Run: FIA20	3-HE_110919B		09/19	/11 12:50
Nitrogen, Nitrate+Nitrite as N	ND	mg/L	0.0009						
Sample ID: H11090255-002CMS	Sample Matrix	Spike			Run: FIA20	3-HE_110919B		09/19	/11 13:01
Nitrogen, Nitrate+Nitrite as N	0.899	mg/L	0.050	90	90	110			
Sample ID: H11090255-002CMSE	Sample Matrix	Spike Duplicate			Run: FIA20	3-HE_110919B		09/19	/11 13:03
Nitrogen, Nitrate+Nitrite as N	0.922	mg/L	0.050	92	90	110	2.6	20	

Qualifiers:

RL - Analyte reporting limit.

Prepared by Helena, MT Branch

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E365.1							Analy	tical Run	: FIA202-HE	_110930A
Sample ID: ICV	Initia	al Calibratio	Nerification Sta	ındard					09/30	/11 13:21
Phosphorus, Total as P		0.235	mg/L	0.010	94	90	110			
Sample ID: CCV	Con	tinuing Calil	oration Verification	on Standard					09/30	/11 13:24
Phosphorus, Total as P		0.244	mg/L	0.010	98	90	110			
Sample ID: CCV1	Con	tinuing Calil	oration Verification	on Standard					09/30	/11 13:25
Phosphorus, Total as P		0.00617	mg/L	0.010	62	50	150			
Sample ID: ICB	Initia	al Calibration	n Blank, Instrume	ent Blank					09/30	/11 13:26
Phosphorus, Total as P		-0.00297	mg/L	0.010		0	0			
Method: E365.1									Bat	ch: 14076
Sample ID: LCS-14076	Lab	oratory Conf	rol Sample			Run: FIA202	2-HE_110930A		09/30	/11 13:22
Phosphorus, Total as P		7.99	mg/L	0.025	96	90	110			
Sample ID: MB-14076	Meti	hod Blank				Run: FIA202	2-HE_110930A		09/30	/11 13:27
Phosphorus, Total as P		ND	mg/L	0.0009						
Sample ID: H11090394-001HMS	Sam	nple Matrix S	Spike			Run: FIA202	2-HE_110930A		09/30	/11 13:44
Phosphorus, Total as P		0.223	mg/L	0.010	100	90	110			
Sample ID: H11090394-001HMS	D Sam	nple Matrix S	Spike Duplicate			Run: FIA202	2-HE_110930A		09/30	/11 13:45
Phosphorus, Total as P		0.225	mg/L	0.010	100	90	110	0.8	20	

Prepared by Helena, MT Branch

Analyte	Count R	lesult	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: Kelada mod								Analytic	cal Run: SUB	-B173149
Sample ID: ICV-1	Initial C	alibration	Verification St	andard					09/26	/11 11:44
Cyanide, Total		0.109	mg/L	0.0050	109	90	110			
Method: Kelada mod									Batch	: B_57321
Sample ID: LCS-57321	Laborat	tory Cont	rol Sample			Run: SUB-E	3173149		09/26	/11 11:49
Cyanide, Total		0.109	mg/L	0.0050	109	90	110			
Sample ID: MB-57321	Method	l Blank				Run: SUB-E	3173149		09/26	/11 11:51
Cyanide, Total		ND	mg/L	0.002						
Sample ID: H11090277-002D	Sample	Matrix S	pike			Run: SUB-E	3173149		09/26	/11 12:04
Cyanide, Total	0	.0934	mg/L	0.0050	93	90	110			
Sample ID: H11090277-002D	Sample	Matrix S	pike Duplicate			Run: SUB-E	3173149		09/26	/11 12:06
Cyanide, Total	0	.0861	mg/L	0.0050	86	90	110	8.2	10	S

Workorder Receipt Checklist

H11090249

Tetra Tech Inc

Login completed by: Tracy L. Lorash Date Received: 9/15/2011 Reviewed by: Received by: TLL BL2000\sdull 9/30/2011 Reviewed Date: Carrier Hand Del name: Shipping container/cooler in good condition? Not Present Yes ✓ No \square Custody seals intact on shipping container/cooler? Yes No 🗌 Not Present ✓ Custody seals intact on sample bottles? Yes No 🗌 Not Present ✓ Chain of custody present? Yes ✓ No 🗌 Chain of custody signed when relinquished and received? Yes ✓ No \square Chain of custody agrees with sample labels? Yes √ No 🗌 Samples in proper container/bottle? Yes ✓ No 🗌 Sample containers intact? Yes ✓ No 🗌 Sufficient sample volume for indicated test? Yes √ No 🗌 All samples received within holding time? Yes √ No 🗌 (Exclude analyses that are considered field parameters such as pH, DO, Res Cl, Sulfite, Ferrous Iron, etc.) Container/Temp Blank temperature: 5.6℃ Water - VOA vials have zero headspace? Yes No 🗌 No VOA vials submitted $\sqrt{}$ Water - pH acceptable upon receipt? Not Applicable Yes √ No 🗌

Contact and Corrective Action Comments:

None

Page 31 of 32

In certain circumstances, samples submitted to Energy Laboratories, Inc. may be subcontracted to earlier certified laboratories in order to complete the analysis requested.

This serves as notice of this possibility. All sub-contract data will be clearly notated on your analytical report.

Visit our web site at www.energylab.com for additional information, downloadable fee schedule, forms, and links.

Leach Pad Samples 6 samples total for Table 11

TABLE 11 LEACH PAD SOLUTION ANALYTICAL REQUIREMENTS											
Parameter	MDL (mg/L) ⁽¹⁾	Method No.	Max. Holding Time								
Physicochemical											
рН	0.1 s.u.	A4500	24 Hours								
Conductivity	1	A2510B	28 Days								
Total Dissolved Solids	10	A2540C	7 Days								
Total Recoverable Metals ⁽²⁾											
Arsenic	0.005	E200.8	6 Months								
Barium	0.005	E200.8	6 Months								
Cadmium	0.00008	E200.8	6 Months								
Copper	0.01	E200.8	6 Months								
Iron	0.03	E200.8	6 Months								
Lead	0.002	E200.8	6 Months								
Manganese	0.01	E200.8	6 Months								
Mercury	0.0001	E245.1	6 Months								
Selenium	0.005	E200.8	6 Months								
Silicon	0.1	E200.8	6 Months								
Silver	0.0005	E200.8	6 Months								
Strontium	0.1	E200.8	6 Months								
 	Dissolved	Metals	_ 								
Calcium	1	E200.7	6 Months								
Magnesium	1	E200.7	6 Months								
Potassium	1	E200.7	6 Months								
Sodium	1	E200.7	6 Months								
	Inorgar	nics	- 								
Cyanide, total	0.005	SM4500 CN / 335.4	14 Days								
Cyanide, weak acid dissociable (WAD)	0.005	SM 4500	14 Days								
Thiocyanate	0.2	A4500	14 Days								
Alkalinity, total	4	A2320B	14 Days								
Chloride	1	E300.0	28 Days								
Sulfate	1	E300.0	28 Days								
Fluoride	0.1	A4500	28 Days								
	Nutrie		-								
Ammonia (low level)	0.1	SM4500 NH3	28 Days								
Nitrogen, Nitrate+Nitrite as N	0.05	E353.2	28 Days								
Nitrite	0.05	E353.2	48 Hours								
Phosphorous, Total	0.01	E365.1	28 Days								

MDL = Method Detection Limit in milligrams per liter (mg/L).

Leach pad solution to be analyzed for total recoverable metals for comparison to groundwater chemistry.

ANALYTICAL SUMMARY REPORT

October 10, 2011

Tetra Tech Inc 303 Irene St Helena, MT 59601

Workorder No.: H11090279 Quote ID: H634 - Beal 2011 Site Wide Monitoring

Project Name: Beal Mtn Mine

Energy Laboratories Inc Helena MT received the following 8 samples for Tetra Tech Inc on 9/16/2011 for analysis.

Sample ID	Client Sample ID	Collect Date Receive Date	Matrix	Test
H11090279-001	SBB-91-29	09/15/11 17:08 09/16/11	Aqueous	Metals by ICP/ICPMS, Tot. Rec. Cyanide, Free Cyanide, Total Manual Distillation Total Cyanide Digestion Cyanide, Weak Acid Dissociable WAD Cyanide Distillation Nitrogen, Ammonia Nitrogen, Nitrate + Nitrite Metals Digestion by EPA 200.2 Preparation for TDS Solids, Total Dissolved
H11090279-002	SBB-87-02	09/15/11 10:05 09/16/11	Aqueous	Metals by ICP/ICPMS, Dissolved Alkalinity Conductivity Hardness as CaCO3 Anions by Ion Chromatography pH
H11090279-003	WRMW-1	09/14/11 16:40 09/16/11	Aqueous	Same As Above
H11090279-004	LPPZ-3	09/15/11 15:45 09/16/11	Aqueous	Metals by ICP/ICPMS, Tot. Rec. Cyanide, Free Cyanide, Total Manual Distillation Total Cyanide Digestion Cyanide, Weak Acid Dissociable WAD Cyanide Distillation Nitrogen, Ammonia Nitrogen, Nitrate + Nitrite Metals Digestion by EPA 200.2 Preparation for TDS Solids, Total Dissolved
H11090279-005	SBB-94-31	09/15/11 14:45 09/16/11	Aqueous	Same As Above
H11090279-006	SBB-88-25	09/15/11 16:20 09/16/11	Aqueous	Same As Above
H11090279-007	Dup-3	09/15/11 6:00 09/16/11	Aqueous	Same As Above

ANALYTICAL SUMMARY REPORT

H11090279-008 Toe Drain 09/15/11 11:30 09/16/11 Aqueous Metals by ICP/ICPMS, Tot. Rec. Alkalinity Cyanide, Free Cyanide, Total Manual Distillation **Total Cyanide Digestion** Cyanide, Weak Acid Dissociable WAD Cyanide Distillation Conductivity Anions by Ion Chromatography Nitrogen, Ammonia Nitrogen, Nitrate + Nitrite Metals Digestion by EPA 200.2 Preparation for TSS Solids, Total Suspended

The analyses presented in this report were performed by Energy Laboratories, Inc., 3161 E. Lyndale Ave., Helena, MT 59604, unless otherwise reported.

Any exceptions or problems with the analyses are noted in the Laboratory Analytical Report, the QA/QC Summary Report, or the Case Narrative.

The results as reported relate only to the item(s) submitted for testing.

If you have any questions regarding these test results, please call.

Report Approved By:

Prepared by Helena, MT Branch

 Client:
 Tetra Tech Inc
 Report Date:
 10/10/11

 Project:
 Beal Mtn Mine
 Collection Date:
 09/15/11 17:08

 Lab ID:
 H11090279-001
 DateReceived:
 09/16/11

 Client Sample ID
 SBB-91-29
 Matrix:
 Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL PROPERTIES							
Solids, Total Dissolved TDS @ 180 C	1020	mg/L		10		A2540 C	09/19/11 13:01 / cmm
INORGANICS							
Cyanide, Total	0.342	mg/L	D	0.006		Kelada mod	09/27/11 12:02 / eli-b
Cyanide, Free	NA	mg/L		0.20		A4500-CN-F	09/27/11 16:00 / eli-b
Cyanide, Weak Acid Dissociable	0.088	mg/L		0.005		D2036C	09/27/11 13:40 / eli-b
- The Weak Acid Dissociable (WAD) Cyanide was	analyzed, a	nd was <0.2 mg/L,	, the detection I	imit for Free	Cyanide.	Free Cyanide wa	s not analyzed.
NUTRIENTS							
Nitrogen, Nitrate+Nitrite as N	2.99	mg/L		0.05		E353.2	09/20/11 10:38 / reh
Nitrogen, Ammonia as N	ND	mg/L		0.1		E350.1	09/22/11 17:03 / reh
METALS, TOTAL RECOVERABLE							
Copper	ND	mg/L		0.001		E200.8	09/21/11 04:27 / dck
Selenium	0.007	mg/L		0.001		E200.8	09/21/11 04:27 / dck

Report RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

 $\ensuremath{\mathsf{D}}$ - $\ensuremath{\mathsf{RL}}$ increased due to sample matrix.

Prepared by Helena, MT Branch

 Client:
 Tetra Tech Inc
 Report Date:
 10/10/11

 Project:
 Beal Mtn Mine
 Collection Date:
 09/15/11 10:05

 Lab ID:
 H11090279-002
 DateReceived:
 09/16/11

 Client Sample ID
 SBB-87-02
 Matrix:
 Aqueous

					MCL/		
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By
PHYSICAL PROPERTIES							
рН	8.0	s.u.		0.1		A4500-H B	09/19/11 22:07 / zeg
Conductivity	1340	umhos/cm		1		A2510 B	09/19/11 10:57 / cmm
INORGANICS							
Alkalinity, Total as CaCO3	65	mg/L		4		A2320 B	09/19/11 22:07 / zeg
Sulfate	870	mg/L	D	2		E300.0	09/23/11 16:22 / zeg
Hardness as CaCO3	909	mg/L		1		A2340 B	09/30/11 12:34 / abb
METALS, DISSOLVED							
Arsenic	0.006	mg/L		0.005		E200.8	09/21/11 05:03 / dck
Barium	ND	mg/L		0.1		E200.8	09/21/11 05:03 / dck
Cadmium	ND	mg/L		0.001		E200.8	09/21/11 05:03 / dck
Calcium	331	mg/L		1		E200.7	09/30/11 12:34 / sld
Chromium	ND	mg/L		0.01		E200.8	09/21/11 05:03 / dck
Lead	ND	mg/L		0.01		E200.8	09/21/11 05:03 / dck
Magnesium	20	mg/L		1		E200.8	09/21/11 05:03 / dck
Mercury	ND	mg/L		0.001		E200.8	09/21/11 05:03 / dck
Selenium	ND	mg/L		0.005		E200.8	09/21/11 05:03 / dck
Silver	ND	mg/L		0.005		E200.8	09/21/11 05:03 / dck

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

 $\ensuremath{\mathsf{D}}$ - $\ensuremath{\mathsf{RL}}$ increased due to sample matrix.

Prepared by Helena, MT Branch

 Client:
 Tetra Tech Inc
 Report Date:
 10/10/11

 Project:
 Beal Mtn Mine
 Collection Date:
 09/14/11 16:40

 Lab ID:
 H11090279-003
 DateReceived:
 09/16/11

 Client Sample ID
 WRMW-1
 Matrix:
 Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL PROPERTIES							
рН	7.4	s.u.		0.1		A4500-H B	09/19/11 22:21 / zeg
Conductivity	1490	umhos/cm		1		A2510 B	09/19/11 10:57 / cmm
INORGANICS							
Alkalinity, Total as CaCO3	77	mg/L		4		A2320 B	09/19/11 22:21 / zeg
Sulfate	990	mg/L	D	2		E300.0	09/23/11 16:35 / zeg
Hardness as CaCO3	1060	mg/L		1		A2340 B	09/30/11 12:45 / abb
METALS, DISSOLVED							
Arsenic	ND	mg/L		0.005		E200.8	09/21/11 05:07 / dck
Barium	ND	mg/L		0.1		E200.8	09/21/11 05:07 / dck
Cadmium	ND	mg/L		0.001		E200.8	09/21/11 05:07 / dck
Calcium	383	mg/L		1		E200.7	09/30/11 12:45 / sld
Chromium	ND	mg/L		0.01		E200.8	09/21/11 05:07 / dck
Lead	ND	mg/L		0.01		E200.8	09/21/11 05:07 / dck
Magnesium	24	mg/L		1		E200.8	09/21/11 05:07 / dck
Mercury	ND	mg/L		0.001		E200.8	09/21/11 05:07 / dck
Selenium	0.052	mg/L		0.005		E200.8	09/21/11 05:07 / dck
Silver	ND	mg/L		0.005		E200.8	09/21/11 05:07 / dck

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

 $\ensuremath{\mathsf{D}}$ - $\ensuremath{\mathsf{RL}}$ increased due to sample matrix.

Prepared by Helena, MT Branch

 Client:
 Tetra Tech Inc
 Report Date:
 10/10/11

 Project:
 Beal Mtn Mine
 Collection Date:
 09/15/11 15:45

 Lab ID:
 H11090279-004
 DateReceived:
 09/16/11

 Client Sample ID
 LPPZ-3
 Matrix:
 Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL PROPERTIES							
Solids, Total Dissolved TDS @ 180 C	570	mg/L		10		A2540 C	09/19/11 13:01 / cmm
INORGANICS							
Cyanide, Total	0.038	mg/L		0.005		Kelada mod	09/27/11 11:22 / eli-b
Cyanide, Free	NA	mg/L		0.20		A4500-CN-F	09/27/11 16:00 / eli-b
Cyanide, Weak Acid Dissociable	0.005	mg/L		0.005		D2036C	09/27/11 13:41 / eli-b
- The Weak Acid Dissociable (WAD) Cyanide was	analyzed, a	nd was <0.2 mg/	L, the detection li	mit for Free	e Cyanide.	Free Cyanide wa	s not analyzed.
NUTRIENTS							
Nitrogen, Nitrate+Nitrite as N	2.21	mg/L		0.05		E353.2	09/20/11 11:21 / reh
Nitrogen, Ammonia as N	ND	mg/L		0.1		E350.1	09/22/11 17:04 / reh
METALS, TOTAL RECOVERABLE							
Copper	0.008	mg/L		0.001		E200.8	09/21/11 05:12 / dck
Selenium	0.006	mg/L		0.001		E200.8	09/21/11 05:12 / dck

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

Prepared by Helena, MT Branch

 Client:
 Tetra Tech Inc
 Report Date:
 10/10/11

 Project:
 Beal Mtn Mine
 Collection Date:
 09/15/11 14:45

 Lab ID:
 H11090279-005
 DateReceived:
 09/16/11

 Client Sample ID
 SBB-94-31
 Matrix:
 Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL PROPERTIES							
Solids, Total Dissolved TDS @ 180 C	292	mg/L		10		A2540 C	09/19/11 13:02 / cmm
INORGANICS							
Cyanide, Total	0.059	mg/L		0.005		Kelada mod	09/27/11 11:24 / eli-b
Cyanide, Free	NA	mg/L		0.20		A4500-CN-F	09/27/11 16:00 / eli-b
Cyanide, Weak Acid Dissociable	0.008	mg/L		0.005		D2036C	09/27/11 13:43 / eli-b
- The Weak Acid Dissociable (WAD) Cyanide was	analyzed, a	nd was <0.2 m	g/L, the detection li	mit for Fre	e Cyanide.	Free Cyanide wa	s not analyzed.
NUTRIENTS							
Nitrogen, Nitrate+Nitrite as N	1.71	mg/L		0.05		E353.2	09/20/11 10:30 / reh
Nitrogen, Ammonia as N	ND	mg/L		0.1		E350.1	09/22/11 17:05 / reh
METALS, TOTAL RECOVERABLE							
Copper	0.002	mg/L		0.001		E200.8	09/21/11 05:16 / dck
Selenium	0.009	mg/L		0.001		E200.8	09/21/11 05:16 / dck

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

Prepared by Helena, MT Branch

 Client:
 Tetra Tech Inc
 Report Date:
 10/10/11

 Project:
 Beal Mtn Mine
 Collection Date:
 09/15/11 16:20

 Lab ID:
 H11090279-006
 DateReceived:
 09/16/11

 Client Sample ID
 SBB-88-25
 Matrix:
 Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL PROPERTIES							
Solids, Total Dissolved TDS @ 180 C	268	mg/L		10		A2540 C	09/19/11 13:03 / cmm
INORGANICS							
Cyanide, Total	0.052	mg/L		0.005		Kelada mod	09/27/11 11:32 / eli-b
Cyanide, Free	NA	mg/L		0.20		A4500-CN-F	09/27/11 16:00 / eli-b
Cyanide, Weak Acid Dissociable	0.019	mg/L		0.005		D2036C	09/27/11 13:45 / eli-b
- The Weak Acid Dissociable (WAD) Cyanide was a	analyzed, a	nd was <0.2 mg/L	, the detection li	mit for Free	Cyanide.	Free Cyanide wa	s not analyzed.
NUTRIENTS							
Nitrogen, Nitrate+Nitrite as N	0.95	mg/L		0.05		E353.2	09/20/11 10:31 / reh
Nitrogen, Ammonia as N	ND	mg/L		0.1		E350.1	09/22/11 17:09 / reh
METALS, TOTAL RECOVERABLE							
Copper	0.002	mg/L		0.001		E200.8	09/21/11 05:21 / dck
Selenium	0.004	mg/L		0.001		E200.8	09/21/11 05:21 / dck

Report RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

Prepared by Helena, MT Branch

 Client:
 Tetra Tech Inc
 Report Date:
 10/10/11

 Project:
 Beal Mtn Mine
 Collection Date:
 09/15/11 06:00

 Lab ID:
 H11090279-007
 DateReceived:
 09/16/11

 Client Sample ID
 Dup-3
 Matrix:
 Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL PROPERTIES							
Solids, Total Dissolved TDS @ 180 C	274	mg/L		10		A2540 C	09/19/11 13:03 / cmm
INORGANICS							
Cyanide, Total	0.045	mg/L		0.005		Kelada mod	09/27/11 11:33 / eli-b
Cyanide, Free	NA	mg/L		0.20		A4500-CN-F	09/27/11 16:00 / eli-b
Cyanide, Weak Acid Dissociable	0.014	mg/L		0.005		D2036C	09/27/11 13:47 / eli-b
- The Weak Acid Dissociable (WAD) Cyanide was	analyzed, a	nd was <0.2 mg	L, the detection li	mit for Free	e Cyanide.	Free Cyanide wa	s not analyzed.
NUTRIENTS							
Nitrogen, Nitrate+Nitrite as N	0.95	mg/L		0.05		E353.2	09/20/11 10:32 / reh
Nitrogen, Ammonia as N	ND	mg/L		0.1		E350.1	09/22/11 17:10 / reh
METALS, TOTAL RECOVERABLE							
Copper	0.003	mg/L		0.001		E200.8	09/21/11 05:25 / dck
Selenium	0.004	mg/L		0.001		E200.8	09/21/11 05:25 / dck

Report RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

Prepared by Helena, MT Branch

 Client:
 Tetra Tech Inc
 Report Date:
 10/10/11

 Project:
 Beal Mtn Mine
 Collection Date:
 09/15/11 11:30

 Lab ID:
 H11090279-008
 DateReceived:
 09/16/11

 Client Sample ID
 Toe Drain
 Matrix:
 Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL PROPERTIES							
Solids, Total Suspended TSS @ 105 C	ND	mg/L		5		A2540 D	09/19/11 12:41 / cmm
INORGANICS							
Cyanide, Total	ND	mg/L		0.005		Kelada mod	09/23/11 13:12 / eli-b1
Alkalinity, Total as CaCO3	89	mg/L		4		A2320 B	09/20/11 20:51 / cmm
Sulfate	1100	mg/L	D	5		E300.0	09/23/11 16:49 / zeg
Cyanide, Free	NA	mg/L		0.20		A4500-CN-F	09/26/11 09:30 / eli-b
Cyanide, Weak Acid Dissociable	NA	mg/L		0.005		D2036C	09/23/11 17:00 / eli-b1
 The Total Cyanide was analyzed, and was less Free Cyanide were not analyzed. 	s than the repo	rting limit for V	Veak Acid Dissocial	ble (WAD)	Cyanide a	nd Free Cyanide.	WAD Cyanide and
NUTRIENTS							
Nitrogen, Nitrate+Nitrite as N	1.36	mg/L		0.05		E353.2	09/20/11 10:33 / reh
Nitrogen, Ammonia as N	ND	mg/L		0.1		E350.1	09/22/11 17:11 / reh
METALS, TOTAL RECOVERABLE							
Copper	0.004	mg/L		0.001		E200.8	09/21/11 05:29 / dck
Selenium	0.059	mg/L		0.001		E200.8	09/21/11 05:29 / dck

Report RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

 $\ensuremath{\mathsf{D}}$ - $\ensuremath{\mathsf{RL}}$ increased due to sample matrix.

Prepared by Helena, MT Branch

Client:Tetra Tech IncReport Date:10/11/11Project:Beal Mtn MineWork Order:H11090279

Analyte	Count Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: A2320 B								Batch	n: R74519
Sample ID: MBLK	Method Blank				Run: MAN-	TECH_110919A		09/19/	11 16:59
Alkalinity, Total as CaCO3	2	mg/L	0.9						
Sample ID: LCS-09152011	Laboratory Con	trol Sample			Run: MAN-	TECH 110919A		09/19/	11 17:15
Alkalinity, Total as CaCO3	620	mg/L	4.0	103	90	110			
Sample ID: H11090278-022AMS	Sample Matrix	Spike			Run: MAN-	TECH_110919A		09/19/	11 20:39
Alkalinity, Total as CaCO3	680	mg/L	4.0	97	80	120			
Sample ID: H11090278-027ADUP	Sample Duplica	ate			Run: MAN-	TECH_110919A		09/19/	11 21:17
Alkalinity, Total as CaCO3	140	mg/L	4.0				0.1	10	
Sample ID: H11090279-002ADUP	Sample Duplica	ate			Run: MAN-	TECH_110919A		09/19/	11 22:14
Alkalinity, Total as CaCO3	64	mg/L	4.0				1.0	10	
Sample ID: MBLK	Method Blank				Run: MAN-	TECH_110919A		09/19/	11 22:59
Alkalinity, Total as CaCO3	ND	mg/L	4.0						
Sample ID: LCS-09152011	Laboratory Con	trol Sample			Run: MAN-	TECH_110919A		09/19/	11 23:08
Alkalinity, Total as CaCO3	610	mg/L	4.0	102	90	110			
Sample ID: H11090298-001AMS	Sample Matrix	Spike			Run: MAN-	TECH_110919A		09/19/	11 23:44
Alkalinity, Total as CaCO3	810	mg/L	4.0	98	80	120			
Sample ID: H11090298-004ADUP	Sample Duplica	ate			Run: MAN-	TECH_110919A		09/20/	11 00:10
Alkalinity, Total as CaCO3	230	mg/L	4.0				1.6	10	
Sample ID: H11090298-011ADUP	Sample Duplica	ate			Run: MAN-	TECH_110919A		09/20/	11 01:05
Alkalinity, Total as CaCO3	330	mg/L	4.0				0.1	10	
Method: A2320 B								Batch	n: R74554
Sample ID: MBLK	Method Blank				Run: MAN-	TECH_110920C		09/20/	11 16:54
Alkalinity, Total as CaCO3	2	mg/L	2						
Sample ID: LCS 09152011	Laboratory Con	trol Sample			Run: MAN-	TECH_110920C		09/20/	11 17:02
Alkalinity, Total as CaCO3	600	mg/L	4.0	100	90	110			
Sample ID: H11090277-019AMS	Sample Matrix	Spike			Run: MAN-	TECH_110920C		09/20/	11 20:22
Alkalinity, Total as CaCO3	710	mg/L	4.0	87	80	120			
Sample ID: H11090277-021ADUP	Sample Duplica	ate			Run: MAN-	TECH_110920C		09/20/	11 20:43
Alkalinity, Total as CaCO3	89	mg/L	4.0				0.0	10	

Qualifiers:

RL - Analyte reporting limit.

Prepared by Helena, MT Branch

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: A2510 B								Analytical	Run: COND	_110919A
Sample ID: ICV1_110919A	Initia	al Calibrati	on Verification	Standard					09/19	/11 10:18
Conductivity		1010	umhos/cm	1.0	101	90	110			
Sample ID: CCV7_110919A	Con	tinuing Ca	alibration Verific	cation Standard					09/19	/11 10:45
Conductivity		1420	umhos/cm	1.0	101	90	110			
Method: A2510 B							Е	Batch: 11091	19A-COND-P	ROBE-W
Sample ID: H11090278-029ADUP	San	nple Duplic	cate			Run: COND	_110919A		09/19	/11 10:54
Conductivity		3690	umhos/cm	1.0				0.1	10	
Sample ID: H11090282-003ADUP	San	nple Duplic	cate			Run: COND	_110919A		09/19	/11 16:11
Conductivity		489	umhos/cm	1.0				1.4	10	

Prepared by Helena, MT Branch

Client:Tetra Tech IncReport Date:10/11/11Project:Beal Mtn MineWork Order:H11090279

Analyte	Count F	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: A2540 C									Bat	ch: 13911
Sample ID: MB-13911	Method	d Blank				Run: ACCU	-124 (14410200)	_110919	09/19	/11 12:52
Solids, Total Dissolved TDS @ 180	0 C	20	mg/L	3						
Sample ID: LCS-13911	Labora	tory Cont	trol Sample			Run: ACCU	-124 (14410200)	_110919	09/19	/11 12:52
Solids, Total Dissolved TDS @ 180	0 C	2010	mg/L	10	100	90	110			
Sample ID: H11090278-016ADUF	Sample	e Duplica	ite			Run: ACCU	-124 (14410200)	_110919	09/19	/11 12:53
Solids, Total Dissolved TDS @ 180	0 C	856	mg/L	10				5.0	5	R
Sample ID: H11090278-017AMS	Sample	e Matrix S	Spike			Run: ACCU	-124 (14410200)	_110919	09/19	/11 12:54
Solids, Total Dissolved TDS @ 180	0 C	2900	mg/L	10	97	80	120			
Sample ID: H11090278-026ADUF	Sample	e Duplica	ite			Run: ACCU	-124 (14410200))_110919	09/19	/11 12:57
Solids, Total Dissolved TDS @ 180	0 C	458	mg/L	10				0.9	5	
Method: A2540 C									Bat	ch: 13912
Sample ID: MB-13912	Method	d Blank				Run: ACCU	-124 (14410200)	_110919	09/19	/11 13:02
Solids, Total Dissolved TDS @ 180	0 C	8	mg/L	3						
Sample ID: LCS-13912	Labora	tory Cont	trol Sample			Run: ACCU	-124 (14410200)	_110919	09/19	/11 13:02
Solids, Total Dissolved TDS @ 180	0 C	1970	mg/L	10	98	90	110			
Sample ID: H11090279-005ADUF	Sample	e Duplica	ite			Run: ACCU	-124 (14410200)	_110919	09/19	/11 13:02
Solids, Total Dissolved TDS @ 180	0 C	290	mg/L	10				0.7	5	
Sample ID: H11090279-006AMS	Sample	e Matrix S	Spike			Run: ACCU	l-124 (14410200 <u>)</u>)_110919	09/19	/11 13:03
Solids, Total Dissolved TDS @ 180	0 C	2290	mg/L	10	101	80	120			

Qualifiers:

RL - Analyte reporting limit.

R - RPD exceeds advisory limit.

Prepared by Helena, MT Branch

Analyte Cou	nt Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: A2540 D								Bat	ch: 13909
Sample ID: MB-13909	Method Blank				Run: ACCU	-124 (14410200)	_110919	09/19/	/11 12:39
Solids, Total Suspended TSS @ 105 C	ND	mg/L	3						
Sample ID: LCS-13909	Laboratory Conf	trol Sample			Run: ACCU	-124 (14410200)	_110919	09/19/	/11 12:40
Solids, Total Suspended TSS @ 105 C	1830	mg/L	10	91	70	130			
Sample ID: H11090278-032ADUP	Sample Duplica	ate			Run: ACCU	-124 (14410200)	_110919	09/19/	/11 12:40
Solids, Total Suspended TSS @ 105 C	38.0	mg/L	10				10	5	R
Sample ID: H11090281-008ADUP	Sample Duplica	ate			Run: ACCU	-124 (14410200	_110919	09/19/	/11 12:43
Solids, Total Suspended TSS @ 105 C	6.00	mg/L	10					5	

Prepared by Helena, MT Branch

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	A4500-H B							Analyti	ical Run:	MAN-TECH_	_110919A
Sample ID:	CCV1-2199	Cor	ntinuing Calib	ration Ve	rification Standard					09/19/	/11 16:46
рН			3.94	s.u.	0.10	99	97	103			
Sample ID:	ICV-2100	Initi	al Calibration	Verificati	on Standard					09/19/	/11 16:55
рН			6.99	s.u.	0.10	100	98	102			
Sample ID:	CCV-2145	Cor	ntinuing Calib	ration Ve	rification Standard					09/19/	/11 19:57
рН			7.08	s.u.	0.10	101	98	102			
Method:	A4500-H B									Batch	n: R74519
Sample ID:	CCV3-2042	Cor	ntinuing Calib	ration Ve	rification Standard		Run: MAN-	ΓΕCH_110919A		09/19/	/11 16:52
рН			10.0	s.u.	0.10	101	99	101			
Sample ID:	H11090279-002ADUF	Sar	mple Duplicat	e			Run: MAN-	ΓΕCH_110919A		09/19/	/11 22:14
рН			8.00	s.u.	0.10				0.4	3	
Sample ID:	H11090298-004ADUF	Sar	mple Duplicat	e			Run: MAN-1	ΓΕCH_110919A		09/20/	/11 00:10
pН			7.96	s.u.	0.10				0.3	3	

Prepared by Helena, MT Branch

Analyte	Count Resul	lt Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: D2036C								Batch:	B_57353
Sample ID: H11090279-007D	Sample Mat	rix Spike Duplicate)		Run: SUB-E	3173215		09/27/	/11 13:51
Cyanide, Weak Acid Dissociable	0.12	3 mg/L	0.0050	109	80	120	1.4	10	
Sample ID: H11090279-007D	Sample Mat	rix Spike			Run: SUB-E	3173215		09/27/	/11 13:49
Cyanide, Weak Acid Dissociable	0.12	:1 mg/L	0.0050	108	80	120			
Sample ID: MB-57353	Method Blar	nk			Run: SUB-E	3173215		09/27/	/11 12:06
Cyanide, Weak Acid Dissociable	NI	D mg/L	0.003						
Sample ID: LCS-57353	Laboratory (Control Sample			Run: SUB-E	3173215		09/27/	/11 12:04
Cyanide, Weak Acid Dissociable	0.10	9 mg/L	0.0050	109	90	110			

Prepared by Helena, MT Branch

Client:Tetra Tech IncReport Date:10/11/11Project:Beal Mtn MineWork Order:H11090279

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E200.7								Analytical R	un: ICP2-HE	_110930A
Sample ID:	ICV	Initi	ial Calibration	n Verification S	tandard					09/30	/11 12:01
Calcium			38.8	mg/L	1.0	97	95	105			
Sample ID:	CCV-1	Coi	ntinuing Calil	oration Verificat	ion Standard					09/30	/11 12:04
Calcium			24.9	mg/L	1.0	100	95	105			
Sample ID:	ICSA	Inte	erference Ch	eck Sample A						09/30	/11 12:15
Calcium			462	mg/L	1.0	92	80	120			
Sample ID:	ICSAB	Inte	erference Ch	eck Sample AB	1					09/30	/11 12:19
Calcium			466	mg/L	1.0	93	80	120			
Method:	E200.7									Batcl	h: R74910
Sample ID:	ICB	Me	thod Blank				Run: ICP2-l	HE_110930A		09/30	/11 12:27
Calcium			0.0280	mg/L	1.0						
Sample ID:	LFB	Lab	oratory Forti	fied Blank			Run: ICP2-l	HE_110930A		09/30	/11 12:31
Calcium			45.9	mg/L	1.0	92	85	115			
Sample ID:	H11090279-002BMS2	Sar	mple Matrix S	Spike			Run: ICP2-l	HE_110930A		09/30	/11 12:38
Calcium			352	mg/L	1.0		70	130			Α
Sample ID:	H11090279-002BMSD	2 Sar	mple Matrix S	Spike Duplicate			Run: ICP2-I	HE_110930A		09/30	/11 12:42
Calcium			353	mg/L	1.0		70	130	0.3	20	Α
Sample ID:	MB-14080	Me	thod Blank				Run: ICP2-I	HE_110930A		09/30	/11 13:04
Calcium			0.09	mg/L	0.008						

Qualifiers:

RL - Analyte reporting limit.

A - The analyte level was greater than four times the spike level. In accordance with the method % recovery is not calculated.

Prepared by Helena, MT Branch

Client:Tetra Tech IncReport Date:10/11/11Project:Beal Mtn MineWork Order:H11090279

Analyte	Count Res	sult Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E200.8						Analyti	ical Run:	ICPMS204-B	_110920A
Sample ID: ICV STD	10 Initial Cali	bration Verifica	tion Standard					09/20	/11 10:23
Arsenic	0.0	512 mg/L	0.0050	102	90	110			
Barium	0.0	510 mg/L	0.10	102	90	110			
Cadmium	0.0	265 mg/L	0.0010	106	90	110			
Chromium	0.0	512 mg/L	0.010	102	90	110			
Copper	0.0	513 mg/L	0.010	103	90	110			
Lead	0.0	531 mg/L	0.010	106	90	110			
Magnesium	2	2.58 mg/L	0.50	103	90	110			
Mercury	0.00	201 mg/L	0.0010	101	90	110			
Selenium	0.0	520 mg/L	0.0050	104	90	110			
Silver	0.0	248 mg/L	0.0050	99	90	110			
Sample ID: ICSA	10 Interferen	ce Check Sam	ple A					09/20	/11 10:27
Arsenic	0.000	188 mg/L	0.0050						
Barium	0.000	164 mg/L	0.10						
Cadmium	0.000	335 mg/L	0.0010						
Chromium	0.00	215 mg/L	0.010						
Copper	0.000	422 mg/L	0.010						
Lead	0.000	100 mg/L	0.010						
Magnesium	4	1.5 mg/L	0.50	104	70	130			
Mercury	5.80E	-05 mg/L	0.0010						
Selenium	0.000	192 mg/L	0.0050						
Silver	0.000	223 mg/L	0.0050						
Sample ID: ICSAB	10 Interferen	ce Check Sam	ple AB					09/20	/11 10:31
Arsenic	0.0	104 mg/L	0.0050	104	70	130			
Barium	0.000	161 mg/L	0.10		0	0			
Cadmium	0.0	104 mg/L	0.0010	104	70	130			
Chromium	0.0	226 mg/L	0.010	113	70	130			
Copper	0.0	205 mg/L	0.010	102	70	130			
Lead	8.70E	-05 mg/L	0.010		0	0			
Magnesium	4	1.9 mg/L	0.50	105	70	130			
Mercury	2.90E	-05 mg/L	0.0010		0	0			
Selenium	0.0	104 mg/L	0.0050	104	70	130			
Silver	0.0	198 mg/L	0.0050	99	70	130			
Sample ID: ICV STD	10 Initial Cali	bration Verifica	tion Standard					09/20	/11 16:02
Arsenic	0.0	509 mg/L	0.0050	102	90	110			
Barium	0.0	503 mg/L	0.10	101	90	110			
Cadmium	0.0	270 mg/L	0.0010	108	90	110			
Chromium	0.0	509 mg/L	0.010	102	90	110			
Copper	0.0	525 mg/L	0.010	105	90	110			
Lead	0.0	526 mg/L	0.010	105	90	110			
Magnesium	2	2.64 mg/L	0.50	105	90	110			
Mercury	0.00		0.0010	102	90	110			
Selenium	0.0		0.0050	107	90	110			

Qualifiers:

RL - Analyte reporting limit.

Prepared by Helena, MT Branch

Client:Tetra Tech IncReport Date:10/11/11Project:Beal Mtn MineWork Order:H11090279

Analyte	Count Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E200.8						Analyti	cal Run:	ICPMS204-B	3_110920 <i>A</i>
Sample ID: ICV STD	10 Initial Calibrati	on Verification	Standard					09/20	0/11 16:02
Silver	0.0244	mg/L	0.0050	98	90	110			
Sample ID: ICSA	10 Interference C	heck Sample A	A					09/20	0/11 16:06
Arsenic	0.000171	mg/L	0.0050						
Barium	0.000165	mg/L	0.10						
Cadmium	0.000408	mg/L	0.0010						
Chromium	0.00213	mg/L	0.010						
Copper	0.000449	mg/L	0.010						
Lead	0.000103	mg/L	0.010						
Magnesium	42.0	mg/L	0.50	105	70	130			
Mercury	5.20E-05	mg/L	0.0010						
Selenium	0.000383	mg/L	0.0050						
Silver	0.000131	mg/L	0.0050						
Sample ID: ICSAB	10 Interference C	heck Sample A	λ Β					09/20	0/11 16:11
Arsenic	0.0106	mg/L	0.0050	106	70	130			
Barium	0.000160	mg/L	0.10		0	0			
Cadmium	0.0103	mg/L	0.0010	103	70	130			
Chromium	0.0226	mg/L	0.010	113	70	130			
Copper	0.0205	mg/L	0.010	102	70	130			
Lead	8.00E-05	mg/L	0.010		0	0			
Magnesium	42.4	mg/L	0.50	106	70	130			
Mercury	2.60E-05	mg/L	0.0010		0	0			
Selenium	0.0104	mg/L	0.0050	104	70	130			
Silver	0.0198	mg/L	0.0050	99	70	130			
Sample ID: ICV STD	10 Initial Calibrati	on Verification	Standard					09/20	0/11 23:36
Arsenic	0.0514	mg/L	0.0050	103	90	110			
Barium	0.0515	mg/L	0.10	103	90	110			
Cadmium	0.0268	mg/L	0.0010	107	90	110			
Chromium	0.0515	mg/L	0.010	103	90	110			
Copper	0.0530	mg/L	0.010	106	90	110			
Lead	0.0522	mg/L	0.010	104	90	110			
Magnesium	2.59	mg/L	0.50	104	90	110			
Mercury	0.00203	mg/L	0.0010	101	90	110			
Selenium	0.0516	mg/L	0.0050	103	90	110			
Silver	0.0257	mg/L	0.0050	103	90	110			
Sample ID: ICSA	10 Interference C	heck Sample A	4					09/20	0/11 23:40
Arsenic	0.000173	mg/L	0.0050						
Barium	0.000176	mg/L	0.10						
Cadmium	0.000371	mg/L	0.0010						
Chromium	0.00214	mg/L	0.010						
Copper	0.000433	mg/L	0.010						
Lead	8.60E-05	mg/L	0.010						

Qualifiers:

RL - Analyte reporting limit.

Prepared by Helena, MT Branch

Client:Tetra Tech IncReport Date:10/11/11Project:Beal Mtn MineWork Order:H11090279

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E200.8							Analytic	al Run:	ICPMS204-B	_110920 <i>A</i>
Sample ID:	ICSA	10 I	nterference Ch	eck Sample A	١					09/20)/11 23:40
Magnesium			41.1	mg/L	0.50	103	70	130			
Mercury			8.40E-05	mg/L	0.0010						
Selenium			0.000294	mg/L	0.0050						
Silver			0.000176	mg/L	0.0050						
Sample ID:	ICSAB	10 I	nterference Ch	eck Sample A	ΛB					09/20)/11 23:44
Arsenic			0.0105	mg/L	0.0050	105	70	130			
Barium			0.000158	mg/L	0.10		0	0			
Cadmium			0.00998	mg/L	0.0010	100	70	130			
Chromium			0.0222	mg/L	0.010	111	70	130			
Copper			0.0203	mg/L	0.010	102	70	130			
Lead			7.30E-05	mg/L	0.010		0	0			
Magnesium			40.5	mg/L	0.50	101	70	130			
Mercury			3.60E-05	mg/L	0.0010		0	0			
Selenium			0.00996	mg/L	0.0050	100	70	130			
Silver			0.0206	mg/L	0.0050	103	70	130			
Method:	E200.8									Ва	tch: 13913
Sample ID:	MB-13913	2 1	Method Blank				Run: ICPMS	S204-B_110920A	١	09/20)/11 17:14
Copper			ND	mg/L	0.0004						
Selenium			ND	mg/L	0.0002						
Sample ID:	LCS-13913	2 L	_aboratory Con	trol Sample			Run: ICPMS	S204-B_110920 <i>A</i>	١	09/20)/11 17:18
Copper			0.508	mg/L	0.010	102	85	115			
Selenium			0.518	mg/L	0.0050	104	85	115			
Sample ID:	H11090249-002DMS3	2 5	Sample Matrix S	Spike			Run: ICPMS	S204-B_110920 <i>A</i>		09/20)/11 17:54
Copper			0.561	mg/L	0.010	102	70	130			
Selenium			0.830	mg/L	0.0050	116	70	130			
Sample ID:	H11090249-002DMSD)3 2 9	Sample Matrix S	Spike Duplica	te		Run: ICPMS	S204-B_110920 <i>A</i>		09/20)/11 17:58
Copper			0.557	mg/L	0.010	101	70	130	0.7	20	
Selenium			0.810	mg/L	0.0050	112	70	130	2.6	20	
Method:	E200.8									Batc	h: R74556
Sample ID:		10 N	Method Blank				Run: ICPMS	S204-B_110920 <i>A</i>)/11 11:28
Arsenic			ND	mg/L	3E-05			3_0:::00_0;	•	00/20	,
Barium			ND	mg/L	3E-05						
Cadmium			ND	mg/L	1E-05						
Chromium			7E-05	mg/L	6E-05						
Copper			ND	mg/L	3E-05						
Lead			ND	mg/L	1.0E-05						
Magnesium			ND	mg/L	0.0007						
J			ND ND		9E-06						
Mercury Selenium			ND ND	mg/L	9E-06 4E-05						
Selenium			ND ND	mg/L	4E-05 3E-05						
Silvel			טא	mg/L	3 E-U3						

Qualifiers:

RL - Analyte reporting limit.

Prepared by Helena, MT Branch

Client:Tetra Tech IncReport Date:10/11/11Project:Beal Mtn MineWork Order:H11090279

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E200.8									Batc	h: R74556
Sample ID: ICB	10 Me	thod Blank				Run: ICPMS	S204-B_110920A		09/20	/11 11:28
Sample ID: LFB	10 Lat	oratory Fort	ified Blank			Run: ICPMS	S204-B_110920A		09/20	/11 11:32
Arsenic		0.0511	mg/L	0.0050	102	85	115			
Barium		0.0506	mg/L	0.10	101	85	115			
Cadmium		0.0482	mg/L	0.0010	96	85	115			
Chromium		0.0503	mg/L	0.010	100	85	115			
Copper		0.0484	mg/L	0.010	97	85	115			
Lead		0.0513	mg/L	0.010	103	85	115			
Magnesium		47.9	mg/L	0.50	96	85	115			
Mercury		0.00102	mg/L	0.0010	102	85	115			
Selenium		0.0499	mg/L	0.0050	100	85	115			
Silver		0.0192	mg/L	0.0050	96	85	115			
Sample ID: H11090279-001BMS	10 Sa	mple Matrix	Spike			Run: ICPMS	S204-B_110920A		09/21	/11 04:32
Arsenic		0.0520	mg/L	0.0050	102	70	130			
Barium		0.0599	mg/L	0.10	100	70	130			
Cadmium		0.0460	mg/L	0.0010	90	70	130			
Chromium		0.0482	mg/L	0.010	97	70	130			
Copper		0.0475	mg/L	0.010	94	70	130			
Lead		0.0500	mg/L	0.010	100	70	130			
Magnesium		67.5	mg/L	1.0	89	70	130			
Mercury		0.00100	mg/L	0.0010	99	70	130			
Selenium		0.0562	mg/L	0.0050	98	70	130			
Silver		0.0174	mg/L	0.0050	87	70	130			
Sample ID: H11090279-001BMSI	D 10 Sa	mple Matrix	Spike Duplicate			Run: ICPMS	S204-B_110920A		09/21	/11 04:36
Arsenic		0.0509	mg/L	0.0050	100	70	130	2.2	20	
Barium		0.0588	mg/L	0.10	98	70	130		20	
Cadmium		0.0448	mg/L	0.0010	88	70	130	2.8	20	
Chromium		0.0470	mg/L	0.010	94	70	130	2.6	20	
Copper		0.0466	mg/L	0.010	92	70	130	2.1	20	
Lead		0.0496	mg/L	0.010	99	70	130	0.7	20	
Magnesium		67.0	mg/L	1.0	88	70	130	0.7	20	
Mercury		0.000983	mg/L	0.0010	97	70	130		20	
Selenium		0.0564	mg/L	0.0050	98	70	130	0.3	20	
Silver		0.0182	mg/L	0.0050	91	70	130	4.9	20	

Qualifiers:

RL - Analyte reporting limit.

Prepared by Helena, MT Branch

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E300.0								Analytical F	un: IC101-H	_110923A
Sample ID:	ICV092311-12	Initi	ial Calibration	n Verification S	standard					09/23	/11 13:00
Sulfate			420	mg/L	1.0	104	90	110			
Sample ID:	CCV092311-15	Coi	ntinuing Calil	bration Verifica	tion Standard					09/23	/11 13:41
Sulfate			410	mg/L	1.0	103	90	110			
Method:	E300.0									Batch	n: R74678
Sample ID:	ICB092311-13	Me	thod Blank				Run: IC101-	H_110923A		09/23	/11 13:14
Sulfate			ND	mg/L	0.1						
Sample ID:	LFB092311-14	Lab	oratory Forti	fied Blank			Run: IC101-	H_110923A		09/23	/11 13:27
Sulfate			200	mg/L	1.1	99	90	110			
Sample ID:	H11090278-031AMS	Sar	mple Matrix S	Spike			Run: IC101-	H_110923A		09/23	/11 15:28
Sulfate			200	mg/L	1.1	100	90	110			
Sample ID:	H11090278-031AMSI	D Sar	mple Matrix S	Spike Duplicate)		Run: IC101-	H_110923A		09/23	/11 15:41
Sulfate			200	mg/L	1.1	100	90	110	0.6	20	

Prepared by Helena, MT Branch

Client:Tetra Tech IncReport Date:10/11/11Project:Beal Mtn MineWork Order:H11090279

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E350.1							Analyt	ical Run	: FIA203-HE_	_110922A
Sample ID: ICV	Initia	d Calibration	n Verification Sta	andard					09/22	/11 15:54
Nitrogen, Ammonia as N		1.10	mg/L	0.10	110	90	110			
Sample ID: ICB	Initia	l Calibration	n Blank, Instrum	ent Blank					09/22	/11 15:59
Nitrogen, Ammonia as N		-0.0604	mg/L	0.10		0	0			
Method: E350.1									Batch	n: R74640
Sample ID: LCS	Labo	oratory Cont	rol Sample			Run: FIA20	3-HE_110922A		09/22	/11 15:55
Nitrogen, Ammonia as N		15.1	mg/L	0.50	96	90	110			
Sample ID: LFB	Labo	oratory Forti	fied Blank			Run: FIA20	3-HE_110922A		09/22	/11 15:56
Nitrogen, Ammonia as N		0.963	mg/L	0.10	96	90	110			
Sample ID: MBLK	Meth	nod Blank				Run: FIA20	3-HE_110922A		09/22	/11 16:00
Nitrogen, Ammonia as N		ND	mg/L	0.002						
Sample ID: H11090277-016CMS	Sam	ple Matrix S	Spike			Run: FIA20	3-HE_110922A		09/22	/11 16:55
Nitrogen, Ammonia as N		0.904	mg/L	0.10	90	80	120			
Sample ID: H11090277-016CMS	D Sam	ple Matrix S	Spike Duplicate			Run: FIA20	3-HE_110922A		09/22	/11 16:56
Nitrogen, Ammonia as N		0.905	mg/L	0.10	91	80	120	0.2	10	
Sample ID: H11090282-001DMS	Sam	ple Matrix S	Spike			Run: FIA20	3-HE_110922A		09/22	/11 17:14
Nitrogen, Ammonia as N		0.829	mg/L	0.10	83	80	120			
Sample ID: H11090282-001DMSI	D Sam	ple Matrix S	Spike Duplicate			Run: FIA20	3-HE_110922A		09/22	/11 17:15
Nitrogen, Ammonia as N		0.818	mg/L	0.10	82	80	120	1.3	10	

Qualifiers:

RL - Analyte reporting limit.

Prepared by Helena, MT Branch

Client:Tetra Tech IncReport Date:10/11/11Project:Beal Mtn MineWork Order:H11090279

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E353.2							Analy	tical Run	: FIA203-HE	_110920A
Sample ID: ICV	Initi	al Calibratio	n Verification St	andard					09/20	/11 09:13
Nitrogen, Nitrate+Nitrite as N		1.07	mg/L	0.050	107	90	110			
Sample ID: ICB	Initi	al Calibratio	n Blank, Instrum	nent Blank					09/20	/11 09:19
Nitrogen, Nitrate+Nitrite as N		-0.00621	mg/L	0.050		0	0			
Sample ID: CCV	Cor	ntinuing Cali	bration Verificati	ion Standard					09/20	/11 10:18
Nitrogen, Nitrate+Nitrite as N		0.488	mg/L	0.050	98	90	110			
Sample ID: CCV	Cor	ntinuing Cali	bration Verificati	ion Standard					09/20	/11 11:14
Nitrogen, Nitrate+Nitrite as N		0.475	mg/L	0.050	95	90	110			
Method: E353.2									Batch	n: R74531
Sample ID: LCS	Lab	oratory Con	trol Sample			Run: FIA20	3-HE_110920A		09/20	/11 09:14
Nitrogen, Nitrate+Nitrite as N		25.1	mg/L	0.20	104	90	110			
Sample ID: LFB	Lab	oratory Fort	ified Blank			Run: FIA20	3-HE_110920A		09/20	/11 09:15
Nitrogen, Nitrate+Nitrite as N		1.000	mg/L	0.050	100	90	110			
Sample ID: MBLK	Met	hod Blank				Run: FIA20	3-HE_110920A		09/20	/11 09:20
Nitrogen, Nitrate+Nitrite as N		ND	mg/L	0.0009						
Sample ID: H11090277-020CMS	Sar	nple Matrix :	Spike			Run: FIA20	3-HE_110920A		09/20	/11 10:34
Nitrogen, Nitrate+Nitrite as N		1.58	mg/L	0.050	88	90	110			S
Sample ID: H11090277-020CMSI) Sar	nple Matrix :	Spike Duplicate			Run: FIA20	3-HE_110920A		09/20	/11 10:36
Nitrogen, Nitrate+Nitrite as N		1.61	mg/L	0.050	91	90	110	79	20	R
Sample ID: H11090310-001AMS	Sar	nple Matrix :	Spike			Run: FIA20	3-HE_110920A		09/20	/11 11:19
Nitrogen, Nitrate+Nitrite as N		3.76	mg/L	0.050	83	90	110			S
Sample ID: H11090310-001AMSE) Sar	nple Matrix :	Spike Duplicate			Run: FIA20	3-HE_110920A		09/20	/11 11:20
Nitrogen, Nitrate+Nitrite as N		3.73	mg/L	0.050	82	90	110	0.9	20	S
			-							

Qualifiers:

RL - Analyte reporting limit.

R - RPD exceeds advisory limit.

ND - Not detected at the reporting limit.

S - Spike recovery outside of advisory limits.

Prepared by Helena, MT Branch

Client:Tetra Tech IncReport Date:10/11/11Project:Beal Mtn MineWork Order:H11090279

Analyte	Count Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit Qual
Method: Kelada mod							Analytic	al Run: SUB-B173081
Sample ID: ICV	Initial Calibratio	n Verification St	andard					09/23/11 10:29
Cyanide, Total	0.106	mg/L	0.0050	106	90	110		
Method: Kelada mod								Batch: B_57252
Sample ID: B11091726-011DMSE	Sample Matrix	Spike Duplicate			Run: SUB-E	3173081		09/23/11 12:53
Cyanide, Total	0.106	mg/L	0.0050	106	90	110	6.0	10
Sample ID: LFB	Laboratory Fort	ified Blank			Run: SUB-E	3173081		09/23/11 10:32
Cyanide, Total	0.100	mg/L	0.0050	100	90	110		
Sample ID: B11091726-011DMS	Sample Matrix	Spike			Run: SUB-E	3173081		09/23/11 12:51
Cyanide, Total	0.113	mg/L	0.0050	113	90	110		S
Sample ID: MB	Method Blank				Run: SUB-E	3173081		09/23/11 10:34
Cyanide, Total	ND	mg/L	0.002					
Sample ID: B11091720-006FMS	Sample Matrix	Spike			Run: SUB-E	3173081		09/23/11 12:07
Cyanide, Total	0.0811	mg/L	0.0050	81	90	110		S
Sample ID: B11091720-006FMSD	Sample Matrix	Spike Duplicate			Run: SUB-E	3173081		09/23/11 12:10
Cyanide, Total	0.0813	mg/L	0.0050	81	90	110	0.2	10 S
Sample ID: B11091817-001DMS	Sample Matrix	Spike			Run: SUB-E	3173081		09/23/11 13:34
Cyanide, Total	0.101	mg/L	0.0050	96	90	110		
Sample ID: B11091817-001DMSE	Sample Matrix	Spike Duplicate			Run: SUB-E	3173081		09/23/11 13:36
Cyanide, Total	0.102	mg/L	0.0050	97	90	110	1.6	10
Method: Kelada mod							Analytic	al Run: SUB-B173215
Sample ID: ICV-1	Initial Calibratio	n Verification St	andard					09/27/11 11:06
Cyanide, Total	0.104	mg/L	0.0050	104	90	110		
Method: Kelada mod								Batch: B_57352
Sample ID: H11090279-005D	Sample Matrix	Spike			Run: SUB-E	3173215		09/27/11 11:26
Cyanide, Total	0.139	mg/L	0.0050	80	90	110		S
Sample ID: H11090279-005D	Sample Matrix	Spike Duplicate			Run: SUB-E	3173215		09/27/11 11:28
Cyanide, Total	0.151	mg/L	0.0050	91	90	110	7.9	10
Sample ID: MB-57352	Method Blank				Run: SUB-E	3173215		09/27/11 11:15
Cyanide, Total	0.002	mg/L	0.002					
Sample ID: LCS-57352	Laboratory Con	trol Sample			Run: SUB-E	3173215		09/27/11 11:11
Cyanide, Total	0.108	mg/L	0.0050	106	90	110		

Qualifiers:

RL - Analyte reporting limit.

ND - Not detected at the reporting limit.

S - Spike recovery outside of advisory limits.

Workorder Receipt Checklist

H11090279

Tetra Tech Inc

Login completed by: Tracy L. Lorash Date Received: 9/16/2011 Reviewed by: Received by: elm BL2000\sdull 9/27/2011 Reviewed Date: Carrier Hand Del name: Shipping container/cooler in good condition? Not Present Yes ✓ No \square Custody seals intact on shipping container/cooler? Yes No 🗌 Not Present ✓ Custody seals intact on sample bottles? Yes No 🗌 Not Present ✓ Chain of custody present? Yes ✓ No 🗌 Chain of custody signed when relinquished and received? Yes ✓ No \square Chain of custody agrees with sample labels? Yes √ No 🗌 Samples in proper container/bottle? Yes ✓ No 🔲 Sample containers intact? Yes ✓ No 🗌 Sufficient sample volume for indicated test? Yes √ No 🗌 All samples received within holding time? Yes √ No 🗌 (Exclude analyses that are considered field parameters such as pH, DO, Res Cl, Sulfite, Ferrous Iron, etc.) Container/Temp Blank temperature: 3.4℃ Water - VOA vials have zero headspace? Yes No 🗌 No VOA vials submitted $\sqrt{}$ Water - pH acceptable upon receipt? Not Applicable Yes √ No 🗌

Contact and Corrective Action Comments:

None

 ENERGY

Chain of Custody and Analytical Request Record

age
-
.g.

111111111111111111111111111111111111111			PLEASE PRINT	ĺ. ⁻	ovide as m	Provide as much information as possible.	on as po	ssible.			:	J
Company Name:			Project Name, PWS,		Permit, Etc.			Samp	Sample Origin	EPA/Stat	EPA/State Compliance:	
Testra Tech			Becal	1411	Mine			State:	727	Yes 🗆	8	<u> </u>
il Address:			Contact Name:	ij	Phone/Fax	× 1	,	Ęmail:		Sampler:	Sampler: (Ptease Print)	of :
303 Irana Street			Yin	رمص	19746	Mausa) textra	tetra tech.com	.com	4	Maus	<u>27</u>
Helana MT 5960,	0/	:	-644	\$210	,	;	')	<u>de</u>
e Address:			Invoice Cont	Invoice Contact & Phone:				Purch	Purchase Order:	Quote/Bo	Quote/Bottle Order:	Pa
Same			Same	1							8345	<u>. </u>
Special Report/Formats:)W	<u> এনাউ</u> দৈত	SIS REC			ŧ	Contact ELI prior to RUSH sample submittal	-	CALLY O	
			VBOE Solids ay <u>O</u> ther	Metal Tetal	/ E J & J ,			刀	for charges and scheduling – See Instruction Page		Cooler ID(s):	
/WWTP	Format:		of Con : A W S er <u>S</u> oils : <u>B</u> ioass inking V	nabi	s		_	_	Comments:		Receipt Tempo	
	NELAC		Type <u>W</u> ate tation	<u>m ; </u>	is c L)			On Ice: Y (N	\square
			Sample <u>A</u> ii <u>Veg</u> e	Rec	gan yan		SEE	<u>ر</u>			Custody Seal On Bottle On Cooler Y N	
SAMPLE IDENTIFICATION	Collection	Collection		vs.i	1 0 . W		Sta	ェ		a =	٠ -	
(Name, Location, Interval, etc.)	Date	Time	MATRIX	Ph To	Z					7	Match	\bot
588-91-29	9-15-11	1708	42	X X	X X				See Table	7	H11660279	<u>ā-</u>
28B-87-02	9-15-11	1005	بو ع	×					see Table "	9		
WRMW-1	9-14-11	1640	ひと	×					see Toble	9		
1 6007-3	9-15-11	1545	4W	<u>ر</u> لا	2				see Table	7	US:	
5/3/8 - 94-31	9-15-11	1445	A 17	<u>×</u>	~ \$				<u>ر</u>	7	(Y) (
1	9-15-11	1620	34	<u></u>	고 오				Table	7		<u>L</u> .
Y	9-15-11	0600	37	7	Σ Σ				Table	7	(A)7/	
0 1	9-15-11	1130	40	X R	ጸ- ኢ-				2/902	7	91R	
8					:					0.5	4/ <i>B</i> (
10				:								L
_	y Date	16/11 112	Signature	ure:	, Rec	Received by (print):		Date/Time:		Signature	re:	
٥	Date		Signature	lure:	Rec	Received by (print):		Date/Time:	:	Signature	ø.	
Signed Sample Disposal:	Return to Client	ļ	Lab Disposal:	<u>, a</u>	Х¥	Received by Laboratory	1	Date/Time:	Date/Ilme: 4 9.16-11	/Signatur	Sollas	

In certain circumstances, samples submitted to Energy Laboratories, Inc. may be subcontracted to other certified laboratories in order to complete the analysis requested for this serves as notice of this possibility. All sub-contract data will be clearly notated on your analytical report.

Visit our web site at www.energylab.com for additional information, downloadable fee schedule, forms, and links.

Leach Pad Area Groundwater 8 samples X 2 events for Table 7

LEACH PAD AREA	TABLI GROUNDWATER	7 R ANALYTICAL REQUIR	EMENTS
Parameter	MDL (mg/L) ⁽¹⁾	Method No.	Max. Holding Time
	Physicoch	emical	
Total Dissolved Solids	10	A2540C	7 Days
	Metals	(2)	
Copper	0.001	E200.8	6 Months
Selenium	0.001	E200.8	6 Months
*****	Inorgan	ics	
Cyanide, free	0.2	SM4500 CN F	14 Days
Cyanide, total	0.005	SM4500 CN / 335.4	14 Days
Cyanide, weak acid dissociable (WAD)	0.005	SM 4500	14 Days
	Nutrier	its	
Ammonia (low level)	0.1	SM4500 NH3	28 Days
Nitrogen, Nitrate+Nitrite as N	0.05	E353.2	28 Days

- MDL = Method Detection Limit in milligrams per liter (mg/L).
 Groundwater to be analyzed for total recoverable metals for comparison to leach pad chemistry.

Waste Rock Dump Groundwater samples 2 samples X 2 events for Table 9

WASTE ROCK D	TABLE UMP GROUNDWATE	9 R ANALYTICAL REQ	UIREMENTS
Parameter	MDL (mg/L) ⁽¹⁾	Method No.	Max. Holding Time
	Physicoche	emical	
рН	0.1	A45400	24 hours
Conductivity	1	A2510B	28 Days
	Metals	2)	<u> </u>
Arsenic	0.005	E200.8	6 Months
Barium	0.1	E200.8	6 Months
Cadmium	0.001	E200.8	6 Months
Calcium	1	E200.8	6 Months
Chromium	0.01	E200.8	6 Months
Lead	0.01	E200.8	6 Months
Magnesium	_ 1	E200.7	6 Months
Mercury	0.001	E200.8	6 Months
Selenium	0.005	E200.8	6 Months
Silver	0.005	E200.8	6 Months
	Inorgani	Ç8	<u> </u>
Total Alkalinity, total CaCO3	4	A2320B	14 Days
Sulfate	1	E300.0	28 Days
Hardness, CaCO3	1	A2340B	14 Days

MDL = Method Detection Limit in milligrams per liter (mg/L). To be analyzed for total dissolved metals.

Beal 2011 Site Wide Monitoring Analytic Summary:

Surface Water 23 samples X 2 events For Table 4

SURFACE WATER A	TABL ND SPRING	E 4 ANALYTICAL REQUIR	REMENTS				
Parameter	MDL (mg/L) ⁽¹⁾	Method No.	Max. Holding Time				
	Physicocl	remical					
Total Suspended Solids	5.0	E160.2	7 Days				
Alkalinity, total ³	4.0	A2320B	14 Days				
Metals ⁽²⁾							
Copper	0.001	E200.8	6 Months				
Selenium	0.001	E200.8	6 Months				
	Inorga	nics					
Cyanide, free	0.2	SM4500 CN F	14 Days				
Cyanide, total	0.005	SM4500 CN / 335.4	14 Days				
Cyanide, weak acid dissociable (WAD)	0.005	SM 4500	14 Days				
Nutrients							
Ammonia (low level)	0.1	SM4500 NH3	28 Days				
Nitrogen, Nitrate+Nitrite as N	0.05	E353.2	28 Days				
Sulfate ³	1.0	E300.0	28 Days				

- MDL = Method Detection Limit in milligrams per liter (mg/L)
 Surface water and spring parameters will be analyzed for total recoverable metals.
 Alkalinity and Sulfate to be analyzed only at locations SPR-5, SPR-10A, Toe Drain, and MB-Drain.